Error estimate and regularity for the compressible Navier-Stokes equations by Newton's method

被引:5
|
作者
Kim, SD [1 ]
Lee, YH
机构
[1] Kyungpook Natl Univ, Coll Nat Sci, Dept Math, Taegu 702701, South Korea
[2] Chonbuk Natl Univ, Dept Math, Chonju, South Korea
关键词
compressible Stokes equations; Newton's method;
D O I
10.1002/num.10061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The finite element discretization error estimate and H-1 regularity are shown for the solution generated by Newton's method to the stationary compressible Navier-Stokes equations by interpreting Newton's method as an equivalent iterative method. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:511 / 524
页数:14
相关论文
共 50 条
  • [41] On the inviscid limit of the compressible Navier-Stokes equations near Onsager's regularity in bounded domains
    Robin Ming Chen
    Zhilei Liang
    Dehua Wang
    Runzhang Xu
    Science China Mathematics, 2024, (01) : 1 - 22
  • [42] On the inviscid limit of the compressible Navier-Stokes equations near Onsager's regularity in bounded domains
    Chen, Robin Ming
    Liang, Zhilei
    Wang, Dehua
    Xu, Runzhang
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (01) : 1 - 22
  • [43] On the inviscid limit of the compressible Navier-Stokes equations near Onsager’s regularity in bounded domains
    Robin Ming Chen
    Zhilei Liang
    Dehua Wang
    Runzhang Xu
    Science China Mathematics, 2024, 67 : 1 - 22
  • [44] Error estimates for a numerical approximation to the compressible barotropic Navier-Stokes equations
    Gallouet, Thierry
    Herbin, Raphaele
    Maltese, David
    Novotny, Antonin
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (02) : 543 - 592
  • [45] On a new approach to the issue of existence and regularity for the steady compressible Navier-Stokes equations
    Mucha, P. B.
    Pokorny, M.
    NONLINEARITY, 2006, 19 (08) : 1747 - 1768
  • [46] Global Regularity to the Two Dimensional Compressible Navier-Stokes Equations with Mass Diffusion
    Cai, Xiaoyun
    Cao, Zhengzi
    Sun, Yongzhong
    ACTA APPLICANDAE MATHEMATICAE, 2015, 136 (01) : 63 - 77
  • [47] Global Regularity to the Two Dimensional Compressible Navier-Stokes Equations with Mass Diffusion
    Xiaoyun Cai
    Zhengzi Cao
    Yongzhong Sun
    Acta Applicandae Mathematicae, 2015, 136 : 63 - 77
  • [48] Error estimates for the implicit MAC scheme for the compressible Navier-Stokes equations
    Gallouet, Thierry
    Maltese, David
    Novotny, Antonin
    NUMERISCHE MATHEMATIK, 2019, 141 (02) : 495 - 567
  • [50] NONLINEAR RELAXATION QUASI-NEWTON ALGORITHM FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS
    EDWARDS, JR
    MCRAE, DS
    AIAA JOURNAL, 1993, 31 (01) : 57 - 60