Equal channel angular extrusion of ultra-high molecular weight polyethylene

被引:12
|
作者
Reinitz, Steven D. [1 ]
Engler, Alexander J. [1 ]
Carlson, Evan M. [1 ]
Van Citters, Douglas W. [1 ]
机构
[1] Dartmouth Coll, Thayer Sch Engn, 14 Engn Dr, Hanover, NH 03755 USA
关键词
UHMWPE; Entanglements; DMA; DSC; ECAE; FATIGUE BEHAVIOR; PROCESSING PARAMETERS; WEAR; DEFORMATION; UHMWPE; RESISTANCE; OXIDATION; ORIENTATION; PRESSURE;
D O I
10.1016/j.msec.2016.05.085
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Ultra-high molecular weight polyethylene (UHMWPE), a common bearing surface in total joint arthroplasty, is subject to material property tradeoffs associated with conventional processing techniques. For orthopaedic applications, radiation-induced cross-linking is used to enhance the wear resistance of the material, but cross-linking also restricts relative chain movement in the amorphous regions and hence decreases toughness. Equal Channel Angular Extrusion (ECAE) is proposed as a novel mechanism by which entanglements can be introduced to the polymer bulk during consolidation, with the aim of imparting the same tribological benefits of conventional processing without complete inhibition of chain motion. ECAE processing at temperatures near the crystalline melt for UHMWPE produces (1) increased entanglements compared to control materials; (2) increasing entanglements with increasing temperature; and (3) mechanical properties between values for untreated polyethylene and for cross-linked polyethylene. These results support additional research in ECAE-processed UHMWPE for joint arthroplasty applications. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:623 / 628
页数:6
相关论文
共 50 条
  • [21] Tribological study of porous ultra-high molecular weight polyethylene
    College of Mechanical and Material Engineering, China Three Gorges University, Yichang 443002, China
    不详
    Mocaxue Xuebao, 2007, 6 (539-543):
  • [22] DEVELOPMENT OF ANISOTROPY IN ULTRA-HIGH MOLECULAR-WEIGHT POLYETHYLENE
    GAO, P
    MACKLEY, MR
    NICHOLSON, TM
    POLYMER, 1990, 31 (02) : 237 - 242
  • [23] A study of the nanotribological fatigue of ultra-high molecular weight polyethylene
    Gibbs, C.
    Bender, J. W.
    TRIBOLOGY LETTERS, 2006, 22 (01) : 85 - 93
  • [24] Radiation induced modifications in ultra-high molecular weight polyethylene
    Stephens, C. P.
    Benson, R. S.
    Chipara, M.
    SURFACE & COATINGS TECHNOLOGY, 2007, 201 (19-20): : 8230 - 8236
  • [25] Tailored bimodal ultra-high molecular weight polyethylene particles
    Lafleur, Sarah
    Berthoud, Romain
    Ensinck, Richard
    Cordier, Astrid
    De Cremer, Gert
    Philippaerts, An
    Bastiaansen, Kees
    Margossian, Tigran
    Severn, John R.
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2018, 56 (15) : 1645 - 1656
  • [26] Stabilisation of ultra-high molecular weight polyethylene with Vitamin E
    Bracco, P.
    Brunella, V.
    Zanetti, M.
    Luda, M. P.
    Costa, L.
    POLYMER DEGRADATION AND STABILITY, 2007, 92 (12) : 2155 - 2162
  • [27] The crosslinked ultra-high molecular weight polyethylene: Risk and limitation
    Costa, L
    Bracco, P
    del Prever, EMB
    BIOCERAMICS IN JOINT ARTHROPLASTY, 2004, : 89 - 92
  • [28] Evaluation of Sequentially Crosslinked Ultra-High Molecular Weight Polyethylene
    Morrison, M. L.
    Jani, S.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2009, 90B (01) : 87 - 100
  • [29] Nickel catalysts for the synthesis of ultra-high molecular weight polyethylene
    Tan, Chen
    Chen, Changle
    SCIENCE BULLETIN, 2020, 65 (14) : 1137 - 1138
  • [30] A study of the nanotribological fatigue of ultra-high molecular weight polyethylene
    C. Gibbs
    J.W. Bender
    Tribology Letters, 2006, 22 : 85 - 93