Tribocorrosion behavior of boronized Co1.19Cr1.86Fe1.30Mn1.39Ni1.05Al0.17B0.04 high entropy alloy

被引:47
|
作者
Gunen, Ali [1 ]
机构
[1] Iskenderun Tech Univ, Fac Engn & Nat Sci, Dept Met & Mat Engn, TR-31200 Antakya, Turkey
来源
关键词
High entropy alloy; Boronizing; Nanoindentation; Tribocorrosion; Friction; Wear; WEAR BEHAVIOR; FRACTURE-TOUGHNESS; BORIDE-LAYER; AISI; 304-STAINLESS-STEEL; TRIBOLOGICAL PROPERTIES; MECHANICAL-BEHAVIOR; PHASE EVOLUTION; MICROSTRUCTURE; HARDNESS; STEEL;
D O I
10.1016/j.surfcoat.2021.127426
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Boride layers were grown on the surface of a Co1.19Cr1.86Fe1.30Mn1.39Ni1.05Al0.17B0.04 high-entropy alloy (HEA) by boronizing at temperatures of 900, 950 and 1000 degrees C for 4 h using nanosized boronizing powders. Characterizations were carried out by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), microhardness measurements, nanoindentation tests, surface profilometry and ball-on-disc type wear tests. The tribocorrosion behavior of the boronized HEAs and the untreated alloy were investigated in air and in 5% HCl. Microstructural examinations revealed complex metal boride layers on the surfaces of the boronized HEAs, consisting mainly of Cr2Ni3B6, Fe0.4Mn0.6B, Cr0.4Mn0.6B and CrFeB2 phases. The boride layers were silicide-free, with thickness and hardness values of 31.95-64.36 mu m and 23.49-28.09 GPa, respectively. The boronized HEAs exhibited reduced friction coefficients and low wear losses in both ambient air and 5% HCl compared to the untreated HEA. Due in part to the lubricating and cooling effect of the solution, the untreated HEA and the boronized HEAs showed reduced wear losses in 5% HCl compared to air. In air, the wear mechanism of the boronized HEAs was abrasive wear combined with polishing, while in the as-cast HEA the wear mechanism was abrasive wear accompanied by plastic deformation. In 5% HCl, the wear mechanism of the boronized HEAs was abrasive wear accompanied by oxidation and pitting, while in the as-cast HEA the wear mechanism was abrasive wear combined with pitting.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] A deep neural network regressor for phase constitution estimation in the high entropy alloy system Al-Co-Cr-Fe-Mn-Nb-Ni
    Vazquez, G.
    Chakravarty, S.
    Gurrola, R.
    Arroyave, R.
    NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [32] A deep neural network regressor for phase constitution estimation in the high entropy alloy system Al-Co-Cr-Fe-Mn-Nb-Ni
    G. Vazquez
    S. Chakravarty
    R. Gurrola
    R. Arróyave
    npj Computational Materials, 9
  • [33] Deformation Behavior of a High-Entropy Al–Co–Cr–Fe–Ni Alloy Fabricated by Means of Wire-Arc Additive Manufacturing
    Ivanov Y.F.
    Osintsev K.A.
    Gromov V.E.
    Konovalov S.V.
    Panchenko I.A.
    Steel in Translation, 2021, 51 (01) : 27 - 32
  • [34] Effect of Copper on Mechanical Properties and Corrosion Behavior of Powder Metallurgy Processed Ni-Co-Cr-Fe-Mn-Cux High Entropy Alloy
    Veerappan, G.
    Ravichandran, M.
    Mohanavel, V
    Pritima, D.
    Rajesh, S.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (03) : 2905 - 2915
  • [35] Heat treatments' effects on the microstructure and mechanical properties of an equiatomic Al-Cr-Fe-Mn-Ni high entropy alloy
    Munitz, A.
    Meshi, L.
    Kaufman, M. J.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 689 : 384 - 394
  • [36] Mechanical properties of Al-Co-Cr-Fe-Ni high-entropy alloy: A molecular dynamics simulation
    Li, Junchen
    Liu, Zeyu
    Bao, Yanfei
    Ren, Junqiang
    Lu, Xuefeng
    Xue, Hongtao
    Tang, Fuling
    MODERN PHYSICS LETTERS B, 2024, 38 (26):
  • [37] A cobalt-rich eutectic high-entropy alloy in the system Al-Co-Cr-Fe-Ni
    Shafiei, Ali
    Rajabi, Samin
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2019, 125 (11):
  • [38] Properties of coatings of the Al–Cr–Fe–Co–Ni–Cu–V high entropy alloy produced by the magnetron sputtering
    L. R. Shaginyan
    V. F. Gorban’
    N. A. Krapivka
    S. A. Firstov
    I. F. Kopylov
    Journal of Superhard Materials, 2016, 38 : 25 - 33
  • [39] Metastable states and physical properties of Co-Cr-Fe-Mn-Ni high-entropy alloy thin films
    Kushnerov, O., I
    Ryabtsev, S., I
    Bashev, V. F.
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2023, 750 (01) : 135 - 143
  • [40] The Effect of Phase Separation on the Mechanical Behavior of the Co-Cr-Cu-Fe-Ni High-Entropy Alloy
    Liu, Heling
    Peng, Chuanxiao
    Li, Xuelian
    Wang, Shenghai
    Wang, Li
    MATERIALS, 2021, 14 (21)