Geometric convergence bounds for Markov chains in Wasserstein distance based on generalized drift and contraction conditions

被引:4
|
作者
Qin, Qian [1 ]
Hobert, James P. [2 ]
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
[2] Univ Florida, Dept Stat, Gainesville, FL USA
关键词
Convergence analysis; Exponential convergence; Kantorovich-Rubinstein distance; Lyapunov drift function; Polish space; Quantitative bound; SUBGEOMETRIC RATES;
D O I
10.1214/21-AIHP1195
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (X-n)(n=0)(infinity) denote a Markov chain on a Polish space that has a stationary distribution pi. This article concerns upper bounds on the Wasserstein distance between the distribution of X-n and pi. In particular, an explicit geometric bound on the distance to stationarity is derived using generalized drift and contraction conditions whose parameters vary across the state space. These new types of drift and contraction allow for sharper convergence bounds than the standard versions, whose parameters are constant. Application of the result is illustrated in the context of a non-linear autoregressive process and a Gibbs algorithm for a random effects model.
引用
收藏
页码:872 / 889
页数:18
相关论文
共 50 条
  • [1] Subgeometric rates of convergence in Wasserstein distance for Markov chains
    Durmus, Alain
    Fort, Gersende
    Moulines, Eric
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (04): : 1799 - 1822
  • [2] Explicit bounds for geometric convergence of Markov chains
    Kolassa, JE
    JOURNAL OF APPLIED PROBABILITY, 2000, 37 (03) : 642 - 651
  • [3] COMPUTABLE BOUNDS FOR GEOMETRIC CONVERGENCE RATES OF MARKOV CHAINS
    Meyn, Sean P.
    Tweedie, R. L.
    ANNALS OF APPLIED PROBABILITY, 1994, 4 (04): : 981 - 1011
  • [4] On improved bounds and conditions for the convergence of Markov chains
    Veretennikov, A. Yu.
    Veretennikova, M. A.
    IZVESTIYA MATHEMATICS, 2022, 86 (01) : 92 - 125
  • [5] Applications of geometric bounds to the convergence rate of Markov chains on Rn
    Yuen, WK
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 87 (01) : 1 - 23
  • [6] Perturbation theory for Markov chains via Wasserstein distance
    Rudolf, Daniel
    Schweizer, Nikolaus
    BERNOULLI, 2018, 24 (4A) : 2610 - 2639
  • [7] Subexponential Upper and Lower Bounds in Wasserstein Distance for Markov Processes
    Nikola Sandrić
    Ari Arapostathis
    Guodong Pang
    Applied Mathematics & Optimization, 2022, 85
  • [8] Subexponential Upper and Lower Bounds in Wasserstein Distance for Markov Processes
    Sandric, Nikola
    Arapostathis, Ari
    Pang, Guodong
    APPLIED MATHEMATICS AND OPTIMIZATION, 2022, 85 (03):
  • [9] ERROR BOUNDS FOR AUGMENTED TRUNCATIONS OF DISCRETE-TIME BLOCK-MONOTONE MARKOV CHAINS UNDER GEOMETRIC DRIFT CONDITIONS
    Masuyama, Hiroyuki
    ADVANCES IN APPLIED PROBABILITY, 2015, 47 (01) : 83 - 105
  • [10] Generalized Wasserstein Distance and Weak Convergence of Sublinear Expectations
    Xinpeng Li
    Yiqing Lin
    Journal of Theoretical Probability, 2017, 30 : 581 - 593