Subexponential Upper and Lower Bounds in Wasserstein Distance for Markov Processes

被引:0
|
作者
Nikola Sandrić
Ari Arapostathis
Guodong Pang
机构
[1] University of Zagreb,Department of Mathematics
[2] University of Texas at Austin,Department of Electrical and Computer Engineering
[3] Rice University,Department of Computational and Applied Mathematics
来源
关键词
Exponential and subexponential ergodicity; Wasserstein distance; Itô process; Foster–Lyapunov condition; Asymptotic flatness (uniform dissipativity); Langevin diffusion process; Ornstein–Uhlenbeck process; Primary 60J05; 60J25; Secondary 60H10; 60J75;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, relying on Foster–Lyapunov drift conditions, we establish subexponential upper and lower bounds on the rate of convergence in the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {L}^p$$\end{document}-Wasserstein distance for a class of irreducible and aperiodic Markov processes. We further discuss these results in the context of Markov Lévy-type processes. In the lack of irreducibility and/or aperiodicity properties, we obtain exponential ergodicity in the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {L}^p$$\end{document}-Wasserstein distance for a class of Itô processes under an asymptotic flatness (uniform dissipativity) assumption. Lastly, applications of these results to specific processes are presented, including Langevin tempered diffusion processes, piecewise Ornstein–Uhlenbeck processes with jumps under constant and stationary Markov controls, and backward recurrence time chains, for which we provide a sharp characterization of the rate of convergence via matching upper and lower bounds.
引用
收藏
相关论文
共 50 条
  • [1] Subexponential Upper and Lower Bounds in Wasserstein Distance for Markov Processes
    Sandric, Nikola
    Arapostathis, Ari
    Pang, Guodong
    APPLIED MATHEMATICS AND OPTIMIZATION, 2022, 85 (03):
  • [2] Subexponential lower bounds for f-ergodic Markov processes
    Bresar, Miha
    Mijatovic, Aleksandar
    PROBABILITY THEORY AND RELATED FIELDS, 2024,
  • [3] Wasserstein distance in speed limit inequalities for Markov jump processes
    Shiraishi, Naoto
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (07):
  • [4] Evolution of the Wasserstein distance between the marginals of two Markov processes
    Alfonsi, Aurelien
    Corbetta, Jacopo
    Jourdain, Benjamin
    BERNOULLI, 2018, 24 (4A) : 2461 - 2498
  • [5] Lower and upper bounds for reversible Markov chains
    Delmotte, T
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (09): : 1053 - 1058
  • [6] LOWER BOUNDS FOR A SUBEXPONENTIAL OPTIMIZATION ALGORITHM
    MATOUSEK, J
    RANDOM STRUCTURES & ALGORITHMS, 1994, 5 (04) : 591 - 607
  • [7] Stochastic Upper and Lower Bounds for General Markov Fluids
    Ciucu, Florin
    Poloczek, Felix
    Schmitt, Jens
    2016 28TH INTERNATIONAL TELETRAFFIC CONGRESS (ITC 28), VOL 1, 2016, : 184 - 192
  • [8] Upper and lower bounds for the solutions of Markov renewal equations
    Gang Li
    Jiaowan Luo
    Mathematical Methods of Operations Research, 2005, 62 : 243 - 253
  • [9] Upper and lower bounds for the solutions of Markov renewal equations
    Li, G
    Luo, JW
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2005, 62 (02) : 243 - 253
  • [10] On subexponential mixing rate for Markov processes
    Klokov, SA
    Veretennikov, AY
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2004, 49 (01) : 110 - 122