Active state and parameter estimation as part of intelligent battery systems

被引:8
|
作者
Schneider, Dominik [1 ]
Liebhart, Bernhard [1 ]
Endisch, Christian [1 ]
机构
[1] TH Ingolstadt, Esplanade 10, D-85049 Ingolstadt, Germany
来源
JOURNAL OF ENERGY STORAGE | 2021年 / 39卷
关键词
Battery model; Intelligent battery system; Goertzel algorithm; Kalman filter; Parameter estimation; State estimation; LITHIUM-ION BATTERIES; OF-CHARGE ESTIMATION; MANAGEMENT-SYSTEMS; KALMAN FILTER; CAPACITY ESTIMATION; HEALTH ESTIMATION; POWER BATTERY; PACKS; SOC; IDENTIFICATION;
D O I
10.1016/j.est.2021.102638
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In recent years, intelligent battery systems came into researchers' focus, which comprise sensors and actuators on cell level. These architectures allow the battery management system to observe and to control the current flow within the battery system, which is particularly promising for battery electric vehicles. Besides, insight into battery cells' states and model parameters is essential for valuable battery management and is often achieved by online state and parameter estimation. Though, during real-world operation the system excitation is often insufficient for an accurate estimate. Within this contribution, we present strategies that utilize the actuators to improve the system's excitation and thereby enhance the observability. Controlling the current flow with the objective of enhanced state and parameter estimation in time domain is a novel approach. The benefit of switching for state and parameter estimation is investigated simulatively and experimentally with NMC/graphite lithium-ion cells. Furthermore, the switching operation's influence on degradation is discussed. Results show that the investigated switching strategies enhance the accuracy of state and parameter estimation by 4% to 30% depending on the inspected parameter, while a negligible impact on cell aging is expected considering the cell heating caused by switching operation is below 1.5%.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Energy Storage Battery State Estimation Based on Model Parameter Identification
    YAN Gangui
    LI Hongbo
    DUAN Shuangming
    CAI Changxing
    LIU Ying
    LI Junhui
    XIA Bo
    中国电机工程学报, 2020, (24) : 8251 - 8251
  • [22] Battery State of Charge Estimation With Event-Triggered Parameter Identification
    Pan, Chenyang
    Peng, Zhaoxia
    Yang, Shichun
    Wen, Guoguang
    Huang, Tingwen
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2024, 10 (04): : 10401 - 10409
  • [23] Energy Storage Battery State Estimation Based on Model Parameter Identification
    Yan G.
    Li H.
    Duan S.
    Cai C.
    Liu Y.
    Li J.
    Xia B.
    Duan, Shuangming (duansm@neepu.edu.cn), 1600, Chinese Society for Electrical Engineering (40): : 8145 - 8154
  • [24] Joint Estimation of State and Parameter With Synchrophasors-Part I: State Tracking
    Bian, Xiaomeng
    Li, X. Rong
    Chen, Huimin
    Gan, Deqiang
    Qiu, Jiaju
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2011, 26 (03) : 1196 - 1208
  • [25] Review of state estimation for battery energy storage systems
    Sun, Yushu
    Gong, Yichun
    Dong, Liang
    Wang, Xiaochen
    Yan, Yuejun
    Tang, Xisheng
    Dang, Yanyang
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2024, 55 (06): : 2320 - 2333
  • [26] Online Lithium-ion Battery Modeling and State of Charge Estimation via Concurrent State and Parameter Estimation
    Li, Jimei
    Wang, Yang
    Ferrari, Riccardo M. G.
    Swevers, Jan
    Ding, Feng
    IFAC PAPERSONLINE, 2024, 58 (15): : 462 - 467
  • [27] Review of battery state estimation methods for electric vehicles - Part I: SOC estimation
    Demirci, Osman
    Taskin, Sezai
    Schaltz, Erik
    Demirci, Burcu Acar
    JOURNAL OF ENERGY STORAGE, 2024, 87
  • [28] Review of battery state estimation methods for electric vehicles - Part I: SOC estimation
    Demirci, Osman
    Taskin, Sezai
    Schaltz, Erik
    Acar Demirci, Burcu
    Journal of Energy Storage, 2024, 87
  • [29] State and dynamical parameter estimation for open quantum systems
    Gambetta, J.
    Wiseman, H.M.
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 64 (04): : 421051 - 421051
  • [30] A Parameter Estimation Approach to State Observation of Nonlinear Systems
    Ortega, R.
    Bobtsov, A.
    Pyrkin, A.
    Aranovskiy, S.
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 6336 - 6341