Genetic Programming with Rademacher Complexity for Symbolic Regression

被引:0
|
作者
Raymond, Christian [1 ]
Chen, Qi [1 ]
Xue, Bing [1 ]
Zhang, Mengjie [1 ]
机构
[1] Victoria Univ Wellington, Sch Engn & Comp Sci, Wellinton, New Zealand
关键词
genetic programming; symbolic regression; generalization; structural risk minimization; Rademacher complexity;
D O I
10.1109/cec.2019.8790341
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Genetic Programming (GP) for symbolic regression is often prone to overfitting the training data, causing poor performance on unseen data. A number of recent works in the field have been devoted to regulating this problem by investigating both the structural and functional complexity of GP individuals during the evolutionary process. This work uses the Rademacher complexity and incorporates it into the fitness function of GP, utilising it as a means of controlling the functional complexity of GP individuals. The experiment results confirm that the new GP method has a notable generalization gain compared to the standard GP and Support Vector Regression (SVR) in most of the considered problems. Further investigations also show that the new GP method generates symbolic regression models that could not only release the overfitting trend in standard GP but also are significantly smaller in size compared to their counterparts in standard GP.
引用
收藏
页码:2657 / 2664
页数:8
相关论文
共 50 条
  • [1] Rademacher Complexity for Enhancing the Generalization of Genetic Programming for Symbolic Regression
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (04) : 2382 - 2395
  • [2] Sequential Symbolic Regression with Genetic Programming
    Oliveira, Luiz Otavio V. B.
    Otero, Fernando E. B.
    Pappa, Gisele L.
    Albinati, Julio
    [J]. GENETIC PROGRAMMING THEORY AND PRACTICE XII, 2015, : 73 - 90
  • [3] Compositional Genetic Programming for Symbolic Regression
    Krawiec, Krzysztof
    Kossinski, Dominik
    [J]. PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 570 - 573
  • [4] Statistical genetic programming for symbolic regression
    Haeri, Maryam Amir
    Ebadzadeh, Mohammad Mehdi
    Folino, Gianluigi
    [J]. APPLIED SOFT COMPUTING, 2017, 60 : 447 - 469
  • [5] Symbolic regression via genetic programming
    Augusto, DA
    Barbosa, HJC
    [J]. SIXTH BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, VOL 1, PROCEEDINGS, 2000, : 173 - 178
  • [6] Taylor Genetic Programming for Symbolic Regression
    He, Baihe
    Lu, Qiang
    Yang, Qingyun
    Luo, Jake
    Wang, Zhiguang
    [J]. PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 946 - 954
  • [7] On improving genetic programming for symbolic regression
    Gustafson, S
    Burke, EK
    Krasnogor, N
    [J]. 2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 912 - 919
  • [8] Lifetime Adaptation in Genetic Programming for the Symbolic Regression
    Merta, Jan
    Brandejsky, Tomas
    [J]. COMPUTATIONAL STATISTICS AND MATHEMATICAL MODELING METHODS IN INTELLIGENT SYSTEMS, VOL. 2, 2019, 1047 : 339 - 346
  • [9] Multifactorial Genetic Programming for Symbolic Regression Problems
    Zhong, Jinghui
    Feng, Liang
    Cai, Wentong
    Ong, Yew-Soon
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2020, 50 (11): : 4492 - 4505
  • [10] Genetic programming with separability detection for symbolic regression
    Wei-Li Liu
    Jiaquan Yang
    Jinghui Zhong
    Shibin Wang
    [J]. Complex & Intelligent Systems, 2021, 7 : 1185 - 1194