Wave propagation in heterogeneous excitable media

被引:29
|
作者
Schebesch, I [1 ]
Engel, H [1 ]
机构
[1] Tech Univ Berlin, Inst Theoret Phys, D-10623 Berlin, Germany
来源
PHYSICAL REVIEW E | 1998年 / 57卷 / 04期
关键词
D O I
10.1103/PhysRevE.57.3905
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Heterogeneities deeply affect pulse dynamics in excitable media. In one dimension, spatially periodic variation of the excitation threshold leads to a characteristic dependence of the propagation speed on the modulation period d with a maximum at a certain optimal value d(opt). The maximum speed may be larger than the pulse velocity in an effective homogeneous medium. In two dimensions, the geometry and size of heterogeneities determine the wave dynamics. For example, an excitability distribution made of oblique stripes with different angles of inclination can result in a speedup or a slowdown of the pulse. The calculations are carried out with a modified Oregonator model for light-sensitive Belouzov-Zhabotinskii media where a heterogeneous distribution of excitability can be achieved by inhomogeneous illumination. Nevertheless, the results do not depend on the details of the local kinetics, but apply to the general case of excitable media.
引用
收藏
页码:3905 / 3910
页数:6
相关论文
共 50 条
  • [31] LG-WAVE PROPAGATION IN HETEROGENEOUS MEDIA
    KENNETT, BLN
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 1989, 79 (03) : 860 - 872
  • [32] DIFFUSION AND WAVE-PROPAGATION IN CELLULAR AUTOMATON MODELS OF EXCITABLE MEDIA
    WEIMAR, JR
    TYSON, JJ
    WATSON, LT
    PHYSICA D, 1992, 55 (3-4): : 309 - 327
  • [33] Entrainment and termination of reentrant wave propagation in a periodically stimulated ring of excitable media
    Nomura, T
    Glass, L
    PHYSICAL REVIEW E, 1996, 53 (06): : 6353 - 6360
  • [34] Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media
    Ma, Jun
    Wu, Fuqiang
    Hayat, Tasawar
    Zhou, Ping
    Tang, Jun
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 486 : 508 - 516
  • [35] Acoustic Wave Propagation in Complicated Geometries and Heterogeneous Media
    Virta, Kristoffer
    Mattsson, Ken
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 61 (01) : 90 - 118
  • [36] PML solution of longitudinal wave propagation in heterogeneous media
    Farzanian M.
    Arbabi Freydoon
    Pak Ronald
    Earthquake Engineering and Engineering Vibration, 2016, 15 (02) : 357 - 368
  • [37] PML solution of longitudinal wave propagation in heterogeneous media
    Farzanian, M.
    Freydoon, Arbabi
    Ronald, Pak
    EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION, 2016, 15 (02) : 357 - 368
  • [38] Ultrasonic wave propagation in randomly layered heterogeneous media
    Ferguson, Alistair S.
    Mulholland, Anthony J.
    Tant, Katherine M. M.
    Foondun, Mohammud
    WAVE MOTION, 2023, 120
  • [39] WAVE-PROPAGATION IN LATERALLY HETEROGENEOUS LAYERED MEDIA
    WENZEL, F
    STENZEL, KJ
    ZIMMERMANN, U
    GEOPHYSICAL JOURNAL INTERNATIONAL, 1990, 103 (03) : 675 - 684
  • [40] PML solution of longitudinal wave propagation in heterogeneous media
    M. Farzanian
    Freydoon Arbabi
    Ronald Pak
    Earthquake Engineering and Engineering Vibration, 2016, 15 : 357 - 368