Towards model-based adaptive optics optical coherence tomography

被引:6
|
作者
Verstraete, Hans R. G. W. [1 ]
Cense, Barry [2 ]
Bilderbeek, Rolf [1 ]
Verhaegen, Michel [1 ]
Kalkman, Jeroen [3 ]
机构
[1] Delft Univ Technol, Delft Ctr Syst & Control, NL-2628 DC Delft, Netherlands
[2] Utsunomiya Univ, CORE, Utsunomiya, Tochigi 3208540, Japan
[3] Delft Univ Technol, Dept Imaging Phys, Fac Sci Appl, NL-2628 DC Delft, Netherlands
来源
OPTICS EXPRESS | 2014年 / 22卷 / 26期
关键词
HIGH-SPEED; ULTRAHIGH-RESOLUTION; SCATTERING MEDIA; MICROSCOPY; BACKSCATTERING; TISSUE; EYES;
D O I
10.1364/OE.22.032406
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The transfer function for optical wavefront aberrations in single-mode fiber based optical coherence tomography is determined. The loss in measured OCT signal due to optical wavefront aberrations is quantified using Fresnel propagation and the calculation of overlap integrals. A distinction is made between a model for a mirror and a scattering medium model. The model predictions are validated with measurements on a mirror and a scattering medium obtained with an adaptive optics optical coherence tomography setup. Furthermore, a one-step defocus correction, based on a single A-scan measurement, is derived from the model and verified. Finally, the pseudo-convex structure of the optical coherence tomography transfer function is validated with the convergence of a hill climbing algorithm. The implications of this model for wavefront sensorless aberration correction are discussed. (c) 2014 Optical Society of America
引用
下载
收藏
页码:32406 / 32418
页数:13
相关论文
共 50 条
  • [21] Adaptive-optics ultrahigh-resolution optical coherence tomography
    Hermann, B
    Fernández, EJ
    Unterhuber, A
    Sattmann, H
    Fercher, AF
    Drexler, W
    Prieto, PM
    Artal, P
    OPTICS LETTERS, 2004, 29 (18) : 2142 - 2144
  • [22] Computations adaptive optics in phase-unstable optical coherence tomography
    Ruiz-Lopera, Sebastian
    Restrepo, Rene
    Cuartas-Velez, Carlos
    Bouma, Brett E.
    Uribe-Patarroyo, Nestor
    OPTICS LETTERS, 2020, 45 (21) : 5982 - 5985
  • [23] Automated Vessel Segmentation in Adaptive Optics - Optical Coherence Tomography Images
    Le, Christopher
    Wang, Dongyi
    Villanueva, Ricardo
    Liu, Zhuolin
    Hammer, Daniel
    Saeedi, Osamah
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2021, 62 (08)
  • [24] Computational adaptive optics for polarization-sensitive optical coherence tomography
    Wang, Jianfeng
    Chaney, Eric J.
    Aksamitiene, Edita
    Marjanovic, Marina
    Boppart, Stephen A.
    OPTICS LETTERS, 2021, 46 (09) : 2071 - 2074
  • [25] Adaptive optics optical coherence tomography for in vivo mouse retinal imaging
    Jian, Yifan
    Zawadzki, Robert J.
    Sarunic, Marinko V.
    JOURNAL OF BIOMEDICAL OPTICS, 2013, 18 (05)
  • [26] Adaptive optics optical coherence tomography - art. no. 653408
    Shi, Guohua
    Ding, Zhihua
    Dai, Yun
    Rao, Xunjun
    Zhang, Yudong
    Fifth International Conference on Photonics and Imaging in Biology and Medicine, Pts 1 and 2, 2007, 6534 : 53408 - 53408
  • [27] Segmentation-Based Registration of Volumetric Images Acquired With Adaptive Optics Optical Coherence Tomography
    Lee, S.
    Kocaoglu, O. P.
    Wang, Q.
    Jonnal, R. S.
    Gao, W.
    Miller, D. T.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2010, 51 (13)
  • [28] Reflective mirror-based line-scan adaptive optics optical coherence tomography
    Jiang, Xiaoyun
    Pandiyan, Vimal Prabhu
    Kuchenbecker, James
    Sabesan, Ramkumar
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2021, 62 (08)
  • [29] Model-based sensorless adaptive optics system
    Yang, Huizhen
    Wu, Jian
    Gong, Chenglong
    Guangxue Xuebao/Acta Optica Sinica, 2014, 34 (08):
  • [30] Wavelet and model-based spectral analysis of color doppler optical coherence tomography
    Choma, MA
    Yazdanfar, S
    Izatt, JA
    OPTICS COMMUNICATIONS, 2006, 263 (01) : 124 - 128