Network-based features for retinal fundus vessel structure analysis

被引:3
|
作者
Amil, Pablo [1 ]
Reyes-Manzano, Cesar F. [2 ]
Guzman-Vargas, Lev [2 ]
Sendina-Nadal, Irene [3 ,4 ,5 ]
Masoller, Cristina [1 ]
机构
[1] Univ Politecn Cataluna, Nonlinear Dynam Nonlinear Opt & Lasers, Terrassa, Spain
[2] Inst Politecn Nacl, Unidad Profes Interdisciplinaria Ingn & Tecnol, Mexico City, DF, Mexico
[3] Univ Rey Juan Carlos, Complex Syst Grp, Madrid, Spain
[4] Univ Rey Juan Carlos, GISC, Madrid, Spain
[5] Univ Politecn Madrid, Ctr Biomed Technol, Madrid, Spain
来源
PLOS ONE | 2019年 / 14卷 / 07期
基金
欧盟地平线“2020”;
关键词
CONVOLUTION NEURAL-NETWORK; DIABETIC-RETINOPATHY; AUTOMATIC DETECTION; FRACTAL ANALYSIS; IMAGES; CLASSIFICATION; ALGORITHM; DIAGNOSIS; TREE;
D O I
10.1371/journal.pone.0220132
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Retinal fundus imaging is a non-invasive method that allows visualizing the structure of the blood vessels in the retina whose features may indicate the presence of diseases such as diabetic retinopathy (DR) and glaucoma. Here we present a novel method to analyze and quantify changes in the retinal blood vessel structure in patients diagnosed with glaucoma or with DR. First, we use an automatic unsupervised segmentation algorithm to extract a tree-like graph from the retina blood vessel structure. The nodes of the graph represent branching (bifurcation) points and endpoints, while the links represent vessel segments that connect the nodes. Then, we quantify structural differences between the graphs extracted from the groups of healthy and non-healthy patients. We also use fractal analysis to characterize the extracted graphs. Applying these techniques to three retina fundus image databases we find significant differences between the healthy and non-healthy groups (p-values lower than 0.005 or 0.001 depending on the method and on the database). The results are sensitive to the segmentation method (manual or automatic) and to the resolution of the images.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] A survey of retinal vessel segmentation in fundus images
    School of Information Science and Engineering, Central South University, Changsha
    410083, China
    不详
    410083, China
    不详
    414000, China
    [J]. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao, 11 (2046-2057):
  • [22] Parallel Network - A Deep Learning Approach for Blood Vessel Segmentation in Retinal fundus Images
    Sivapriya, G.
    Gowri, P.
    Praveen, V
    Varshini, Vishnu
    Sanjeevi, S.
    Tharani, B.
    [J]. 2022 SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL, COMPUTING, COMMUNICATION AND SUSTAINABLE TECHNOLOGIES (ICAECT), 2022,
  • [23] Deep Att-ResGAN: A Retinal Vessel Segmentation Network for Color Fundus Images
    Zhao, Jie
    Feng, Qianjin
    [J]. TRAITEMENT DU SIGNAL, 2021, 38 (05) : 1309 - 1317
  • [24] Retinal Vessel Tortuosity Evaluation using Connected Component Analysis for Fundus Images
    Jameel, S. A.
    Shanavas, A. R. Mohamed
    [J]. 2016 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), VOL. 1, 2016, : 173 - 176
  • [25] Retinal blood vessel width measured on color fundus photographs by image analysis
    Wu, DC
    Schwartz, B
    Schwoerer, J
    Banwatt, R
    [J]. ACTA OPHTHALMOLOGICA SCANDINAVICA, 1995, 73 : 33 - 40
  • [26] Multiscale Blood Vessel Segmentation in Retinal Fundus Images Algorithm Implementation and Analysis
    Sarbasova, Aigerim
    Hasan, Md Mahmud
    [J]. EMBRACING GLOBAL COMPUTING IN EMERGING ECONOMIES, EGC 2015, 2015, 514 : 113 - 121
  • [27] Retinal Vessel Segmentation Based on B-COSFIRE Filters in Fundus Images
    Li, Wenjing
    Xiao, Yalong
    Hu, Hangyu
    Zhu, Chengzhang
    Wang, Han
    Liu, Zixi
    Sangaiah, Arun Kumar
    [J]. FRONTIERS IN PUBLIC HEALTH, 2022, 10
  • [28] Retinal network characterization through fundus image processing: Significant point identification on vessel centerline
    Morales, S.
    Naranjo, V.
    Angulo, J.
    Legaz-Aparicio, A. G.
    Verdu-Monedero, R.
    [J]. SIGNAL PROCESSING-IMAGE COMMUNICATION, 2017, 59 : 50 - 64
  • [29] DEF-Net: A Dual-Encoder Fusion Network for Fundus Retinal Vessel Segmentation
    Li, Jianyong
    Gao, Ge
    Yang, Lei
    Liu, Yanhong
    Yu, Hongnian
    [J]. ELECTRONICS, 2022, 11 (22)
  • [30] A Single-Resolution Fully Convolutional Network for Retinal Vessel Segmentation in Raw Fundus Images
    Araujo, Ricardo J.
    Cardoso, Jaime S.
    Oliveira, Helder P.
    [J]. IMAGE ANALYSIS AND PROCESSING - ICIAP 2019, PT II, 2019, 11752 : 59 - 69