Cluster analysis;
Flow cytometry;
Kernel density estimation;
Mode detection;
Recursive partitioning;
FLOW-CYTOMETRY DATA;
NONPARAMETRIC-ESTIMATION;
DENSITY CONTOUR;
VISUALIZATION;
RATES;
D O I:
10.1007/s00180-016-0702-2
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We present methods for the estimation of level sets, a level set tree, and a volume function of a multivariate density function. The methods are such that the computation is feasible and estimation is statistically efficient in moderate dimensional cases (d approximate to 8) and for moderate sample sizes (n approximate to 50,000). We apply kernel estimation together with an adaptive partition of the sample space. We illustrate how level set trees can be applied in cluster analysis and in flow cytometry.
机构:
Univ Witwatersrand, Dept Math, John Knopfmacher Ctr Applicable Anal & Number The, ZA-2050 Johannesburg, South AfricaUniv Witwatersrand, Dept Math, John Knopfmacher Ctr Applicable Anal & Number The, ZA-2050 Johannesburg, South Africa
Knopfmacher, Arnold
Mansour, Toufik
论文数: 0引用数: 0
h-index: 0
机构:
Univ Haifa, Dept Math, IL-31905 Haifa, IsraelUniv Witwatersrand, Dept Math, John Knopfmacher Ctr Applicable Anal & Number The, ZA-2050 Johannesburg, South Africa
Mansour, Toufik
Wagner, Stephan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Stellenbosch, Dept Math Sci, ZA-7602 Stellenbosch, South AfricaUniv Witwatersrand, Dept Math, John Knopfmacher Ctr Applicable Anal & Number The, ZA-2050 Johannesburg, South Africa
Wagner, Stephan
ELECTRONIC JOURNAL OF COMBINATORICS,
2010,
17
(01):