Solving combinatorial problems with a constraint functional logic language

被引:0
|
作者
Fernández, AJ
Hortalá-González, T
Sáenz-Pérez, F
机构
[1] Univ Malaga, Depto Lenguajes & Ciencias Computac, E-29071 Malaga, Spain
[2] Univ Complutense Madrid, Depto Sistemas Informat & Programac, Madrid, Spain
关键词
constraints; functional logic programming; finite domains;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper describes a proposal to incorporate finite domain constraints in a functional logic system. The proposal integrates functions, higher-order patterns, partial applications, non-determinism, logical variables, currying, types, lazyness, domain variables, constraints and finite domain propagators. The paper also presents TOY(FD), an extension of the functional logic language TOY that provides FD constraints, and shows, by examples, that TOY(FD) combines the power of constraint logic programming with the higher-order characteristics of functional logic programming.
引用
收藏
页码:320 / 338
页数:19
相关论文
共 50 条
  • [21] ASP-DPOP: Solving Distributed Constraint Optimization Problems with Logic Programming
    Le, Tiep
    Son, Tran Cao
    Pontelli, Enrico
    Yeoh, William
    AAMAS'14: PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS, 2014, : 1337 - 1338
  • [22] A generic solver based on functional parallelism for solving combinatorial optimization problems
    Tagashira, Shigeaki
    Mito, Masaya
    Fujita, Satoshi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2006, E89D (06) : 1940 - 1947
  • [23] BACKPROPAGATION NETWORKS FOR LOGIC CONSTRAINT SOLVING
    MONFROGLIO, A
    NEUROCOMPUTING, 1994, 6 (01) : 67 - 98
  • [24] Logic programming for combinatorial problems
    Toshinori Munakata
    Roman Barták
    Artificial Intelligence Review, 2010, 33 : 135 - 150
  • [25] Logic programming for combinatorial problems
    Munakata, Toshinori
    Bartak, Roman
    ARTIFICIAL INTELLIGENCE REVIEW, 2010, 33 (1-2) : 135 - 150
  • [26] LANGUAGE AND STRATEGIES USED BY PROSPECTIVE PRIMARY EDUCATION TEACHERS IN SOLVING COMBINATORIAL PROBLEMS
    Gea, Maria M.
    Batanero, Carmen
    Venegas, Alex
    REVISTA PRAXIS EDUCACIONAL, 2019, 15 (33): : 208 - 232
  • [27] Constraint Satisfaction Techniques for Combinatorial Problems
    Narvaez, David E.
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 8028 - 8029
  • [28] Constraint Programming for Combinatorial Search Problems
    Pascal Van Hentenryck
    Constraints, 1997, 2 (1) : 99 - 101
  • [29] Solving Necklace Constraint Problems
    Flener, Pierre
    Pearson, Justin
    ECAI 2008, PROCEEDINGS, 2008, 178 : 520 - +
  • [30] Solving necklace constraint problems
    Flener, Pierre
    Pearson, Justin
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2009, 64 (2-3): : 61 - 73