Estimation of Aboveground Vegetation Water Storage in Natural Forests in Jiuzhaigou National Nature Reserve of China Using Machine Learning and the Combination of Landsat 8 and Sentinel-2 Data
被引:3
|
作者:
Zhou, Xiangshan
论文数: 0引用数: 0
h-index: 0
机构:
Chengdu Univ Technol, Coll Earth Sci, Chengdu 610059, Peoples R China
POWERCHINA Chengdu Engn Corp Ltd, Chengdu 611130, Peoples R ChinaChengdu Univ Technol, Coll Earth Sci, Chengdu 610059, Peoples R China
Zhou, Xiangshan
[1
,2
]
Yang, Wunian
论文数: 0引用数: 0
h-index: 0
机构:
Chengdu Univ Technol, Coll Earth Sci, Chengdu 610059, Peoples R ChinaChengdu Univ Technol, Coll Earth Sci, Chengdu 610059, Peoples R China
Yang, Wunian
[1
]
Luo, Ke
论文数: 0引用数: 0
h-index: 0
机构:
Chengdu Univ Technol, Coll Earth Sci, Chengdu 610059, Peoples R ChinaChengdu Univ Technol, Coll Earth Sci, Chengdu 610059, Peoples R China
Luo, Ke
[1
]
Tang, Xiaolu
论文数: 0引用数: 0
h-index: 0
机构:
Chengdu Univ Technol, Coll Ecol & Environm, Chengdu 610059, Peoples R China
Chengdu Univ Technol, State Environm Protect Key Lab Synerget Control &, Chengdu 610059, Peoples R ChinaChengdu Univ Technol, Coll Earth Sci, Chengdu 610059, Peoples R China
Tang, Xiaolu
[3
,4
]
机构:
[1] Chengdu Univ Technol, Coll Earth Sci, Chengdu 610059, Peoples R China
[2] POWERCHINA Chengdu Engn Corp Ltd, Chengdu 611130, Peoples R China
[3] Chengdu Univ Technol, Coll Ecol & Environm, Chengdu 610059, Peoples R China
[4] Chengdu Univ Technol, State Environm Protect Key Lab Synerget Control &, Chengdu 610059, Peoples R China
Aboveground vegetation water storage (AVWS) is a fundamental ecological parameter of terrestrial ecosystems which participates in plant metabolism, nutrient and sugar transport, and maintains the integrity of the hydraulic system of the plant. The Jiuzhaigou National Nature Reserve (JNNR) is located in the Eastern Tibet Plateau and it is very sensitive to climate change. However, a regional estimate of the AVWS based on observations is still lacking in the JNNR and improving the model accuracy in such mountainous areas is challenging. Therefore, in this study, we combined the Landsat 8 and Sentinel-2 data to estimate AVWS using multivariate adaptive regression splines (MARS), random forest (RF) and extreme gradient boosting (XGBoost) with the linkage of 54 field observations in the JNNR. The results showed that AVWS varied among different forest types. The coniferous forests had the highest AVWS (212.29 +/- 84.43 Mg ha(-1)), followed by mixed forests (166.29 +/- 72.73 Mg ha(-1)) and broadleaf forests (142.60 +/- 46.36 Mg ha(-1)). The average AVWS was 171.2 Mg ha(-1). Regardless of the modelling approaches, both Sentinel-2 and Landsat 8 successfully estimated AVWS separately. Prediction accuracy of AVWS was improved by combining Landsat 8 and Sentinel-2 images. Among the three machine learning approaches, the XGBoost model performed best with a model efficiency of 0.57 and root mean square error of 48 Mg ha(-1). Predicted AVWS using XGBoost showed a strong spatial pattern of across the study area. The total AVWS was 5.24 x 10(6) Mg with 67.2% coming from conifer forests. The results highlight the potential of improving the accuracy of AVWS estimation by integrating different optical images and using machine learning approaches in mountainous areas.
机构:
Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Key Lab Earth Observat Hainan Prov, Sanya 572000, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Zhen, Jianing
Liao, Jingjuan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Key Lab Earth Observat Hainan Prov, Sanya 572000, Peoples R ChinaChinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Liao, Jingjuan
Shen, Guozhuang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R ChinaChinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
机构:
Mahasarakham Univ, Fac Humanities & Social Sci, Dept Geog, Maha Sarakham 44150, Thailand
Mahasarakham Univ, Fac Humanities & Social Sci, Earth Observat Technol Land & Agr Dev Res Unit, Maha Sarakham 44150, ThailandMahasarakham Univ, Fac Humanities & Social Sci, Dept Geog, Maha Sarakham 44150, Thailand
Suwanlee, Savittri Ratanopad
Pinasu, Dusadee
论文数: 0引用数: 0
h-index: 0
机构:
Natl Sci & Technol Dev Agcy, Technol & Informat Inst Sustainabil, Natl Met & Mat Technol Ctr, Thailand Sci Pk, Pathum Thani 12120, ThailandMahasarakham Univ, Fac Humanities & Social Sci, Dept Geog, Maha Sarakham 44150, Thailand
Pinasu, Dusadee
Keawsomsee, Surasak
论文数: 0引用数: 0
h-index: 0
机构:
Mahasarakham Univ, Fac Humanities & Social Sci, Dept Geog, Maha Sarakham 44150, Thailand
Mahasarakham Univ, Fac Humanities & Social Sci, Earth Observat Technol Land & Agr Dev Res Unit, Maha Sarakham 44150, ThailandMahasarakham Univ, Fac Humanities & Social Sci, Dept Geog, Maha Sarakham 44150, Thailand
Keawsomsee, Surasak
Kasa, Kemin
论文数: 0引用数: 0
h-index: 0
机构:
Mahasarakham Univ, Fac Humanities & Social Sci, Dept Geog, Maha Sarakham 44150, Thailand
Mahasarakham Univ, Fac Humanities & Social Sci, Earth Observat Technol Land & Agr Dev Res Unit, Maha Sarakham 44150, ThailandMahasarakham Univ, Fac Humanities & Social Sci, Dept Geog, Maha Sarakham 44150, Thailand
Kasa, Kemin
Seesanhao, Nattawut
论文数: 0引用数: 0
h-index: 0
机构:
Mahasarakham Univ, Fac Humanities & Social Sci, Dept Geog, Maha Sarakham 44150, Thailand
Mahasarakham Univ, Fac Humanities & Social Sci, Earth Observat Technol Land & Agr Dev Res Unit, Maha Sarakham 44150, ThailandMahasarakham Univ, Fac Humanities & Social Sci, Dept Geog, Maha Sarakham 44150, Thailand
Seesanhao, Nattawut
论文数: 引用数:
h-index:
机构:
Ninsawat, Sarawut
Borgogno-Mondino, Enrico
论文数: 0引用数: 0
h-index: 0
机构:
Univ Turin, Dept Agr Forest & Food Sci, I-10095 Braccini, ItalyMahasarakham Univ, Fac Humanities & Social Sci, Dept Geog, Maha Sarakham 44150, Thailand