Activation of Mps1 promotes transforming growth factor-β-independent Smad signaling

被引:53
|
作者
Zhu, Songcheng [1 ]
Wang, Wei [1 ]
Clarke, David C. [1 ]
Liu, Xuedong [1 ]
机构
[1] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA
关键词
D O I
10.1074/jbc.M700636200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The primary intracellular mediators of TGF-beta signaling are the Smad proteins. Phosphorylation of R-Smad at the C-terminal SSXS motif by the activated TGF-beta type I receptor kinase triggers a conformation change in R-Smad and facilitates complex formation between R- Smad and Smad4, which shuttle into the nucleus where they interact with DNA and other transcription factors to regulate gene expression. In an attempt to identify proteins interacting with activated Smad signaling complex, we discovered that Mps1, a protein kinase that plays important roles in normal mitotic progression and mitotic checkpoint signaling, co-purifies with this complex. We demonstrated that Smad2 and Smad3 but not Smad4 are substrates of Mps1 in vitro and in vivo. Mps1 phosphorylates Smad2 and Smad3 at the SSXS motif in their C-terminal regions in vitro and in vivo. Disruption of microtubule networks by nocodazole activates Mps1 and promotes TGF-beta-independent activation of Smad signaling. We found that Mps1 is involved in turning on Smad signaling by phosphorylating R-Smads. Our results reveal a novel functional link between Mps1 and Smads in a non-canonical Smad signaling pathway.
引用
收藏
页码:18327 / 18338
页数:12
相关论文
共 50 条
  • [41] Transforming growth factor-β signaling and cirrhosis
    Wrana, JL
    HEPATOLOGY, 1999, 29 (06) : 1909 - 1910
  • [42] Convergence of transforming growth factor-β and vitamin D signaling pathways on SMAD transcriptional coactivators
    Yanagisawa, J
    Yanagi, Y
    Masuhiro, Y
    Suzawa, M
    Watanabe, M
    Kashiwagi, K
    Toriyabe, T
    Kawabata, M
    Miyazono, K
    Kato, S
    SCIENCE, 1999, 283 (5406) : 1317 - 1321
  • [43] Zinc Finger Protein 451 Is a Novel Smad Corepressor in Transforming Growth Factor-β Signaling
    Feng, Yili
    Wu, Hongxing
    Xu, Yongxian
    Zhang, Zhengmao
    Liu, Ting
    Lin, Xia
    Feng, Xin-Hua
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (04) : 2072 - 2083
  • [44] The diverse effects of transforming growth factor-β and SMAD signaling pathways during the CTL response
    Chandiran, Karthik
    Cauley, Linda S.
    FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [45] Inhibition of transforming growth factor-β/Smad signaling by phosphatidylinositol 3-kinase pathway
    Qiao, Jingbo
    Kang, Junghee
    Ko, Tien C.
    Evers, B. Mark
    Chung, Dai H.
    CANCER LETTERS, 2006, 242 (02) : 207 - 214
  • [46] The roles of transforming growth factor-β and Smad3 signaling in adipocyte differentiation and obesity
    Tsurutani, Yuya
    Fujimoto, Masaki
    Takemoto, Minoru
    Irisuna, Hiroki
    Koshizaka, Masaya
    Onishi, Shunichiro
    Ishikawa, Takahiro
    Mezawa, Morito
    He, Peng
    Honjo, Satoshi
    Maezawa, Yoshiro
    Saito, Yasushi
    Yokote, Koutaro
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2011, 407 (01) : 68 - 73
  • [47] The transforming growth factor-β/SMAD signaling pathway is present and functional in human mesangial cells
    Poncelet, AC
    de Caestecker, MP
    Schnaper, HW
    KIDNEY INTERNATIONAL, 1999, 56 (04) : 1354 - 1365
  • [48] Human BAMBI Cooperates with Smad7 to Inhibit Transforming Growth Factor-β Signaling
    Yan, Xiaohua
    Lin, Zhenghong
    Chen, Feng
    Zhao, Xingang
    Chen, Hua
    Ning, Yuanheng
    Chen, Ye-Guang
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (44) : 30097 - 30104
  • [49] Mammalian transforming growth factor-βs:: Smad signaling and physio-pathological roles
    Javelaud, D
    Mauviel, A
    INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2004, 36 (07): : 1161 - 1165
  • [50] Activation of the Transforming Growth Factor-β/Activin Signaling Pathway in Human Atherosclerosis
    Oklu, Rahmi
    Hesketh, Robin
    Wicky, Stephan
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2010, 30 (11) : E293 - E293