Time-evolving Weiss fields in the stochastic approach to quantum spins

被引:2
|
作者
Begg, S. E. [1 ]
Green, A. G. [2 ]
Bhaseen, M. J. [1 ]
机构
[1] Kings Coll London, Dept Phys, London WC2R 2LS, England
[2] UCL, London Ctr Nanotechnol, Gordon St, London WC1H 0AH, England
基金
英国工程与自然科学研究理事会;
关键词
DYNAMICS;
D O I
10.1103/PhysRevB.104.024408
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate nonequilibrium quantum spin systems via an exact mapping to stochastic differential equations. This description is invariant under a shift in the mean of the Gaussian noise. We show that one can extend the simulation time for real-time dynamics in one and two dimensions by a judicious choice of this shift. This can be updated dynamically in order to reduce the impact of stochastic fluctuations. We discuss the connection to drift gauges in the gauge-P literature.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Efficient Time-Evolving Stream Processing at Scale
    Liao, Xiaofei
    Huang, Yu
    Zheng, Long
    Jin, Hai
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2019, 30 (10) : 2165 - 2178
  • [42] Anomalous Change Detection in Time-evolving OSNs
    Laleh, Naeimeh
    Carminati, Barbara
    Ferrari, Elena
    2016 15TH IFIP MEDITERRANEAN AD HOC NETWORKING WORKSHOP (MED-HOC-NET 2016), 2016,
  • [43] AUTOAUDIT: Mining Accounting and Time-Evolving Graphs
    Lee, Meng-Chieh
    Zhao, Yue
    Wang, Aluna
    Liang, Pierre Jinghong
    Akoglu, Leman
    Tseng, Vincent S.
    Faloutsos, Christos
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 950 - 956
  • [44] Local Motif Clustering on Time-Evolving Graphs
    Fu, Dongqi
    Zhou, Dawei
    He, Jingrui
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 390 - 400
  • [45] Anomaly Detection in Time-Evolving Attributed Networks
    Xue, Luguo
    Luo, Minnan
    Peng, Zhen
    Li, Jundong
    Chen, Yan
    Liu, Jun
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, 2019, 11448 : 235 - 239
  • [46] Incremental Partitioning of Large Time-Evolving Graphs
    Abdolrashidi, Amirreza
    Ramaswamy, Lakshmish
    2015 IEEE CONFERENCE ON COLLABORATION AND INTERNET COMPUTING (CIC), 2015, : 19 - 27
  • [47] Rare Category Detection on Time-Evolving Graphs
    Zhou, Dawei
    Wang, Kangyang
    Cao, Nan
    He, Jingrui
    2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2015, : 1135 - 1140
  • [48] A Framework for Clustering Categorical Time-Evolving Data
    Cao, Fuyuan
    Liang, Jiye
    Bai, Liang
    Zhao, Xingwang
    Dang, Chuangyin
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2010, 18 (05) : 872 - 882
  • [49] Salience detection in time-evolving image sequences
    Celaya, E
    Jimenez, P
    DESIGN AND APPLICATION OF HYBRID INTELLIGENT SYSTEMS, 2003, 104 : 852 - 860
  • [50] Real-Time Diameter Monitoring for Time-Evolving Graphs
    Fujiwara, Yasuhiro
    Onizuka, Makoto
    Kitsuregawa, Masaru
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PT I, 2011, 6587 : 311 - +