Coincidence and the colouring of maps

被引:1
|
作者
Aarts, JM
Fokkink, RJ
机构
[1] Tech Univ Delft, Fac Math & Informat, NL-2600 GA Delft, Netherlands
[2] Delft Hydraul, Dept Estuaries & Seas, NL-2600 MH Delft, Netherlands
关键词
D O I
10.1112/S0024609397003317
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [8, 6] it was shown that for each k and n such that 2k > n, there exists a contractible k-dimensional complex Y and a continuous map phi: S-n --> Y without the antipodal coincidence property, that is, phi(x) not equal phi(-x) for all x is an element of S-n. In this paper it is shown that for each k and n such that 2k > n, and for each fixed-point free homeomorphism f of an n-dimensional paracompact Hausdorff space X onto itself, there is a contractible k-dimensional complex Y and a continuous map phi: X --> Y such that phi(x) not equal phi(f(x))for all x is an element of X. Various results along these lines are obtained.
引用
收藏
页码:73 / 79
页数:7
相关论文
共 50 条
  • [21] Reidemeister coincidence invariants of fiberwise maps
    Koschorke, Ulrich
    TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (10-11) : 1849 - 1858
  • [22] NIELSEN COINCIDENCE THEORY AND COINCIDENCE-PRODUCING MAPS FOR MANIFOLDS WITH BOUNDARY
    BROWN, RF
    SCHIRMER, H
    TOPOLOGY AND ITS APPLICATIONS, 1992, 46 (01) : 65 - 79
  • [23] Self-coincidence of fibre maps
    Dold, A
    Gonçalves, DL
    OSAKA JOURNAL OF MATHEMATICS, 2005, 42 (02) : 291 - 307
  • [24] COINCIDENCE POINTS FOR CONTRACTION TYPE MAPS
    Latif, A.
    Al-Mazrooei, A. E.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2008, 77 (02): : 175 - 180
  • [25] Coincidence type alternatives for Φ-essential maps
    O'Regan, Donal
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 3031 - 3035
  • [26] The Lefschetz coincidence class of p maps
    Biasi, Carlos
    Libardi, Alice K. M.
    Monis, Thais F. M.
    FORUM MATHEMATICUM, 2015, 27 (03) : 1717 - 1728
  • [27] MAPS PRESERVING THE COINCIDENCE POINTS OF OPERATORS
    Hosseinzadeh, R.
    EURASIAN MATHEMATICAL JOURNAL, 2021, 12 (03): : 42 - 45
  • [28] Lefschetz coincidence class for several maps
    Thaís F. M. Monis
    Stanisław Spież
    Journal of Fixed Point Theory and Applications, 2016, 18 : 61 - 76
  • [29] Coincidence theory and KKM type maps
    O'Regan, Donal
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2025, 70 (01): : 145 - 159
  • [30] GENERALIZED Φ-EPI MAPS AND TOPOLOGICAL COINCIDENCE PRINCIPLES
    O'Regan, Donal
    FIXED POINT THEORY, 2019, 20 (02): : 581 - 590