Identification of parameters in one-dimensional IHCP

被引:10
|
作者
Zhan, S [1 ]
Murio, DA [1 ]
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
关键词
ill-posed problems; IHCP; discrete mollification; automatic filtering;
D O I
10.1016/S0898-1221(97)00274-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new numerical method based on discrete mollification for identification of parameters in one-dimensional inverse heat conduction problems (IHCP). With the approximate noisy data functions (initial temperature on the boundary t = 0, 0 less than or equal to x less than or equal to 1, temperature and space derivative of temperature on the boundary x = 0, 0 less than or equal to t less than or equal to 1) measured at a discrete set of points, the diffusivity coefficient, the heat flux, and the temperature functions are approximately recovered in the unit square of the (x, t) plane. In contrast to other related results, the method does not require any information on the amount and/or characteristics of the noise in the data and the mollification parameters are chosen automatically. Another important feature of the algorithm is that it allows for the recovery of much more general diffusivity parameters, including discontinuous coefficients. Error bounds and numerical examples are provided.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [41] EQUIVALENCE OF A ONE-DIMENSIONAL TURBULENCE PROBLEM AND ONE-DIMENSIONAL COULOMB GAS
    CHUI, ST
    FRISCH, HL
    JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (10) : 1996 - 1997
  • [42] AN INSTANCE OF ONE-DIMENSIONAL NORMAL SPACE CONTAINED IN NO ONE-DIMENSIONAL BICOMPACT
    SMIRNOV, Y
    DOKLADY AKADEMII NAUK SSSR, 1957, 117 (06): : 939 - 942
  • [43] OPTIMIZATION OF TIME PARAMETERS IN A SYSTEM FOR RECOGNIZING ONE-DIMENSIONAL NORMAL SETS
    FOMIN, YA
    SAVICH, AV
    TELECOMMUNICATIONS AND RADIO ENGINEERING, 1984, 38-9 (12) : 69 - 72
  • [44] Estimation of the parameters of one-dimensional maps from chaotic time series
    D. A. Smirnov
    V. S. Vlaskin
    V. I. Ponomarenko
    Technical Physics Letters, 2005, 31 : 97 - 100
  • [45] Order parameters for phase transitions to structures with one-dimensional incommensurate modulations
    Stokes, Harold T.
    Campbell, Branton J.
    Hatch, Dorian M.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2007, 63 : 365 - 373
  • [46] Estimation of the parameters of one-dimensional maps from chaotic time series
    Smirnov, DA
    Vlaskin, VS
    Ponomarenko, VI
    TECHNICAL PHYSICS LETTERS, 2005, 31 (02) : 97 - 100
  • [47] One-Dimensional Hydrodynamic Modeling of the Euphrates River and Prediction of Hydraulic Parameters
    Al-Mansori, Nassrin Jassim Hussien
    Al-Zubaidi, Laith Shaker Ashoor
    CIVIL ENGINEERING JOURNAL-TEHRAN, 2020, 6 (06): : 1074 - 1090
  • [48] Band gap parameters of one-dimensional bicomponent nanostructured magnonic crystals
    Lin, C. S.
    Lim, H. S.
    Wang, Z. K.
    Ng, S. C.
    Kuok, M. H.
    APPLIED PHYSICS LETTERS, 2011, 98 (02)
  • [49] OPTIMAL CONTROL OF ONE-DIMENSIONAL STOCHASTIC-PROCESSES WITH DISTRIBUTED PARAMETERS
    KURSHEV, VN
    SIRAZETDINOV, TK
    AUTOMATION AND REMOTE CONTROL, 1972, 33 (01) : 33 - +
  • [50] One-Dimensional Model for Calculation of Flow Parameters in a Supersonic Air Intake
    Gidaspov V.Y.
    Moseev D.S.
    Severina N.S.
    Russian Aeronautics, 2023, 66 (3): : 528 - 533