LP-BOUNDS FOR PSEUDO-DIFFERENTIAL OPERATORS ON COMPACT LIE GROUPS

被引:17
|
作者
Delgado, Julio [1 ]
Ruzhansky, Michael [1 ]
机构
[1] Imperial Coll London, Dept Math, 180 Queens Gate, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
compact Lie groups; pseudo-differential operators; L-p bounds; MULTIPLIERS; INEQUALITY; SPACES;
D O I
10.1017/S1474748017000123
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a compact Lie group G, in this paper we establish L-p-bounds for pseudo-differential operators in L-p(G). The criteria here are given in terms of the concept of matrix symbols defined on the noncommutative analogue of the phase space G x (G) over cap, where (G) over cap is the unitary dual of G. We obtain two different types of L-p bounds: first for finite regularity symbols and second for smooth symbols. The conditions for smooth symbols are formulated using I-rho,delta(m) (G) classes which are a suitable extension of the well-known (rho,delta) ones on the Euclidean space. The results herein extend classical L-p bounds established by C. Fefferman on R-n. While Fefferman's results have immediate consequences on general manifolds for rho > max{delta, 1 -delta}, our results do not require the condition rho >1-delta. Moreover, one of our results also does not require p > delta. Examples are given for the case of SU(2) congruent to S-3 and vector fields/sub-Laplacian operators when operators in the classes I-0,0(m) and I-1/2,0(m) naturally appear, and where conditions p > delta and p > 1 - delta fail, respectively.
引用
收藏
页码:531 / 559
页数:29
相关论文
共 50 条
  • [21] LP-THEORY OF PSEUDO-DIFFERENTIAL OPERATORS
    KUMANOGO, H
    NAGASE, M
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY, 1970, 46 (02): : 138 - &
  • [22] LP-Continuity for pseudo-differential operators
    Garello, Gianluca
    Morando, Alessandro
    [J]. PSEUDO-DIFFERENTIAL OPERATORS AND RELATED TOPICS, 2006, 164 : 79 - +
  • [23] Remarks on lower bounds for pseudo-differential operators
    Nicola, F
    Rodino, L
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (08): : 1067 - 1073
  • [24] Ellipticity of Fredholm Pseudo-Differential Operators on Lp(Rn)
    Dasgupta, Aparajita
    [J]. NEW DEVELOPMENTS IN PSEUDO-DIFFERENTIAL OPERATORS, 2009, 189 : 107 - 116
  • [25] Lp-Boundedness of Multilinear Pseudo-Differential Operators
    Catana, Viorel
    Molahajloo, Shahla
    Wong, M. W.
    [J]. PSEUDO-DIFFERENTIAL OPERATORS: COMPLEX ANALYSIS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 205 : 167 - +
  • [26] Lp-Estimates for pseudo-differential operators on Zn
    Carlos Andres, Rodriguez Torijano
    [J]. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2011, 2 (03) : 367 - 375
  • [27] Schatten class and nuclear pseudo-differential operators on homogeneous spaces of compact groups
    Vishvesh Kumar
    Shyam Swarup Mondal
    [J]. Monatshefte für Mathematik, 2022, 197 : 149 - 176
  • [28] Lp-bounds for spherical maximal operators on Zn
    Magyar, A
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 1997, 13 (02) : 307 - 317
  • [29] CHARACTERIZATIONS, ADJOINTS AND PRODUCTS OF NUCLEAR PSEUDO-DIFFERENTIAL OPERATORS ON COMPACT AND HAUSDORFF GROUPS
    Ghaemi, M. B.
    Jamalpourbirgani, M.
    Wong, M. W.
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2017, 79 (04): : 207 - 220
  • [30] Schatten class and nuclear pseudo-differential operators on homogeneous spaces of compact groups
    Kumar, Vishvesh
    Mondal, Shyam Swarup
    [J]. MONATSHEFTE FUR MATHEMATIK, 2022, 197 (01): : 149 - 176