Transcriptomics in predictive toxicology

被引:0
|
作者
Storck, T [1 ]
von Brevern, MC [1 ]
Behrens, CK [1 ]
Scheel, J [1 ]
Bach, A [1 ]
机构
[1] Axaron Biosci AG, D-69120 Heidelberg, Germany
关键词
hepatocytes; hierarchical cluster analysis; in vitro-in vivo correlation; microarray; mode of action; predictive toxicology; rat liver; toxicogenomics; transcription profiling;
D O I
暂无
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Once again, genomics is about to change drug development. Following its major impact on target discovery and assay development, which increased the number of compounds at early stages of the process, genomics is now zeroing in on the prediction of potential toxicological problems of compounds. Toxicogenomics is the analysis of toxicological processes at the transcriptome level of a target organ or cell. By simultaneously monitoring the effect of a compound on the transcription levels of hundreds to thousands of genes, toxicogenomics can provide an enormous amount of data. This data bears information on the way in which compounds act at the molecular level, reaching far beyond the mere conclusion of whether or not a particular toxicological outcome is elicited. By compiling transcription profiles for well-known toxicants, we are beginning to learn how to analyze this novel type of data in the context of mechanistic and predictive toxicology.
引用
收藏
页码:90 / 97
页数:8
相关论文
共 50 条
  • [41] Toxicogenomics and the quest for predictive toxicology.
    Paules, RS
    Hamadeh, HK
    Afshari, CA
    Tennant, RW
    Bushel, PR
    TOXICOLOGICAL SCIENCES, 2003, 72 : 224 - 224
  • [42] 8 years of predictive toxicology at Abbott
    Blomme, Eric
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [43] Overview of Predictive Toxicology: Needs and Challenges
    Greene, N.
    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, 2012, 53 : S15 - S15
  • [44] Data governance in predictive toxicology: A review
    Fu, Xin
    Wojak, Anna
    Neagu, Daniel
    Ridley, Mick
    Travis, Kim
    JOURNAL OF CHEMINFORMATICS, 2011, 3
  • [45] Predictive toxicology of chemicals and database mining
    Wang, JS
    Lai, LH
    Tang, YQ
    CHINESE SCIENCE BULLETIN, 2000, 45 (12): : 1093 - 1097
  • [46] Progress towards an OECD reporting framework for transcriptomics and metabolomics in regulatory toxicology
    Harrill, Joshua A.
    Viant, Mark R.
    Yauk, Carole L.
    Sachana, Magdalini
    Gant, Timothy W.
    Auerbach, Scott S.
    Beger, Richard D.
    Bouhifd, Mounir
    O'Brien, Jason
    Burgoon, Lyle
    Caiment, Florian
    Carpi, Donatella
    Chen, Tao
    Chorley, Brian N.
    Colbourne, John
    Corvi, Raffaella
    Debrauwer, Laurent
    O'Donovan, Claire
    Ebbels, Timothy M. D.
    Ekman, Drew R.
    Faulhammer, Frank
    Gribaldo, Laura
    Hilton, Gina M.
    Jones, Stephanie P.
    Kende, Aniko
    Lawson, Thomas N.
    Leite, Sofia B.
    Leonards, Pim E. G.
    Luijten, Mirjam
    Martin, Alberto
    Moussa, Laura
    Rudaz, Serge
    Schmitz, Oliver
    Sobanski, Tomasz
    Strauss, Volker
    Vaccari, Monica
    Vijay, Vikrant
    Weber, Ralf J. M.
    Williams, Antony J.
    Williams, Andrew
    Thomas, Russell S.
    Whelan, Maurice
    REGULATORY TOXICOLOGY AND PHARMACOLOGY, 2021, 125
  • [47] Placental single cell transcriptomics: Opportunities for endocrine disrupting chemical toxicology
    Elkin, Elana R.
    Campbell, Kyle A.
    Lapehn, Samantha
    Harris, Sean M.
    Padmanabhan, Vasantha
    Bakulski, Kelly M.
    Paquette, Alison G.
    MOLECULAR AND CELLULAR ENDOCRINOLOGY, 2023, 578
  • [48] Predictive and robust gene selection for spatial transcriptomics
    Ian Covert
    Rohan Gala
    Tim Wang
    Karel Svoboda
    Uygar Sümbül
    Su-In Lee
    Nature Communications, 14
  • [49] Predictive and robust gene selection for spatial transcriptomics
    Covert, Ian
    Gala, Rohan
    Wang, Tim
    Svoboda, Karel
    Sumbul, Uygar
    Lee, Su-In
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [50] Editorial: Model organisms in predictive toxicology 2022
    Nishimura, Yuhei
    Kudoh, Tetsuhiro
    Komada, Munekazu
    FRONTIERS IN PHARMACOLOGY, 2023, 14