Bash Datalog: Answering Datalog Queries with Unix Shell Commands

被引:1
|
作者
Rebele, Thomas [1 ]
Tanon, Thomas Pellissier [1 ]
Suchanek, Fabian [1 ]
机构
[1] Telecom ParisTech, Paris, France
来源
关键词
SYSTEM;
D O I
10.1007/978-3-030-00671-6_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dealing with large tabular datasets often requires extensive preprocessing. This preprocessing happens only once, so that loading and indexing the data in a database or triple store may be an overkill. In this paper, we present an approach that allows preprocessing large tabular data in Datalog - without indexing the data. The Datalog query is translated to Unix Bash and can be executed in a shell. Our experiments show that, for the use case of data preprocessing, our approach is competitive with state-of-the-art systems in terms of scalability and speed, while at the same time requiring only a Bash shell on a Unix system.
引用
收藏
页码:566 / 582
页数:17
相关论文
共 50 条
  • [41] The expressive powers of stable models for bound and unbound DATALOG queries
    Sacca, D
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1997, 54 (03) : 441 - 464
  • [42] STYPES: Nonrecursive Datalog Rewriter for Linear TGDs and Conjunctive Queries
    Kikot, Stanislav
    Kontchakov, Roman
    Rapisarda, Salvatore
    Zakharyaschev, Michael
    ON THE MOVE TO MEANINGFUL INTERNET SYSTEMS (OTM 2018), PT II, 2018, 11230 : 441 - 460
  • [43] SAFE COMPUTATION OF THE WELL-FOUNDED SEMANTICS OF DATALOG QUERIES
    LEONE, N
    RULLO, P
    INFORMATION SYSTEMS, 1992, 17 (01) : 17 - 31
  • [44] Preference-Based Query Answering in Probabilistic Datalog plus /- Ontologies
    Lukasiewicz, Thomas
    Martinez, Maria Vanina
    Simari, Gerardo I.
    ON THE MOVE TO MEANINGFUL INTERNET SYSTEMS: OTM 2013 CONFERENCES, 2013, 8185 : 501 - 518
  • [45] Query Answering in Probabilistic Datalog plus /- Ontologies under Group Preferences
    Lukasiewicz, Thomas
    Martinez, Maria Vanina
    Simari, Gerardo I.
    Tifrea-Marciuska, Oana
    2013 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCES ON WEB INTELLIGENCE (WI) AND INTELLIGENT AGENT TECHNOLOGIES (IAT), VOL 1, 2013, : 171 - 178
  • [46] Computing the Why-Provenance for Datalog Queries via SAT Solvers
    Calautti, Marco
    Livshits, Ester
    Pieris, Andreas
    Schneider, Markus
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 9, 2024, : 10459 - 10466
  • [47] Preference-Based Query Answering in Probabilistic Datalog+/- Ontologies
    Lukasiewicz, Thomas
    Martinez, Maria Vanina
    Simari, Gerardo I.
    Tifrea-Marciuska, Oana
    JOURNAL ON DATA SEMANTICS, 2015, 4 (02) : 81 - 101
  • [48] Selective Provenance for Datalog Programs Using Top-K Queries
    Deutch, Daniel
    Gilad, Amir
    Moskovitch, Yuval
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2015, 8 (12): : 1394 - 1405
  • [49] SparqLog: A System for Efficient Evaluation of SPARQL 1.1 Queries via Datalog
    Angles, Renzo
    Gottlob, Georg
    Pavlovic, Aleksandar
    Pichler, Reinhard
    Sallinger, Emanuel
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2023, 16 (13): : 4240 - 4253
  • [50] Efficient provenance tracking for datalog using top-k queries
    Daniel Deutch
    Amir Gilad
    Yuval Moskovitch
    The VLDB Journal, 2018, 27 : 245 - 269