A fast shape transformation using a phase-field model

被引:10
|
作者
Kim, Hyundong [1 ]
Lee, Chaeyoung [1 ]
Yoon, Sungha [2 ]
Choi, Yongho [3 ]
Kim, Junseok [1 ]
机构
[1] Korea Univ, Dept Math, Seoul 02841, South Korea
[2] Ewha Womans Univ, Inst Math Sci, Seoul 03760, South Korea
[3] Daegu Univ, Dept Math & Big Data, Gyongsan 38453, Gyeongsangbuk D, South Korea
基金
新加坡国家研究基金会;
关键词
Stable scheme; Finite difference method; Shape transformation; NEGATIVE POISSONS RATIO; AUXETIC STRUCTURE; CASTING PROCESS; SIMULATION; METAMATERIALS; OPTIMIZATION; DESIGN; DEFORMATION;
D O I
10.1016/j.eml.2022.101633
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We propose a numerical method for a fast shape transformation using a phase-field model. The governing equation is based on the modified Allen-Cahn (AC) equation. We numerically solve the equation by using the operator splitting technique. The alternating direction explicit (ADE) finite difference method is used to reduce the strict temporal step constraint when solving the diffusion term. Therefore, we can use a large temporal step size to simulate a fast shape transformation. The reaction term is solved by the separation of variables, and the fidelity term is solved using the semi implicit scheme with a frozen coefficient. To demonstrate that the proposed method can simulate the fast shape transformation with simple or complex sources and targets, we perform several numerical experiments in the three-dimensional space. The computational experiments demonstrate that the shape transformation is fast and smooth. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Quantitative comparison of the phase-transformation kinetics in a sharp-interface and a phase-field model
    Mecozzi, M. G.
    Eiken, J.
    Apel, M.
    Sietsma, J.
    COMPUTATIONAL MATERIALS SCIENCE, 2011, 50 (06) : 1846 - 1853
  • [32] Phase-field crystal model with a vapor phase
    Schwalbach, Edwin J.
    Warren, James A.
    Wu, Kuo-An
    Voorhees, Peter W.
    PHYSICAL REVIEW E, 2013, 88 (02):
  • [33] Numerical simulation of Ostwald ripening using the phase-field model
    Ode, M
    Kim, SG
    Kim, WT
    Suzuki, T
    SECOND INTERNATIONAL CONFERENCE ON PROCESSING MATERIALS FOR PROPERTIES, 2000, : 1065 - 1068
  • [34] Study of Thermoelastic Martensitic Transformations Using a Phase-Field Model
    Jiao Man
    Jihua Zhang
    Yonghua Rong
    Ning Zhou
    Metallurgical and Materials Transactions A, 2011, 42 : 1154 - 1164
  • [35] Fracture in mode I using a conserved phase-field model
    Eastgate, LO
    Sethna, JP
    Rauscher, M
    Cretegny, T
    Chen, CS
    Myers, CR
    PHYSICAL REVIEW E, 2002, 65 (03): : 1 - 036117
  • [36] Study of Thermoelastic Martensitic Transformations Using a Phase-Field Model
    Man, Jiao
    Zhang, Jihua
    Rong, Yonghua
    Zhou, Ning
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2011, 42A (05): : 1154 - 1164
  • [37] A Phase-Field Model for Flows with Phase Transition
    Kraenkel, Mirko
    Kroener, Dietmar
    THEORY, NUMERICS AND APPLICATIONS OF HYPERBOLIC PROBLEMS II, 2018, 237 : 243 - 254
  • [38] A phase-field method for shape optimization of incompressible flows
    Li, Futuan
    Hu, Xianliang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (04) : 1029 - 1041
  • [39] PHASE-FIELD METHODS FOR SPECTRAL SHAPE AND TOPOLOGY OPTIMIZATION
    Garcke, Harald
    Huettl, Paul
    Kahle, Christian
    Knopf, Patrik
    Laux, Tim
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2023, 29 : 3269 - 3290
  • [40] A phase-field model for grain growth
    Chen, LQ
    Fan, DN
    Tikare, V
    GRAIN GROWTH IN POLYCRYSTALLINE MATERIALS III, 1998, : 137 - 146