Nonsmooth convex optimization for structured illumination microscopy image reconstruction

被引:15
|
作者
Boulanger, Jerome [1 ,2 ,3 ]
Pustelnik, Nelly [4 ,5 ]
Condat, Laurent [6 ]
Sengmanivong, Lucie [1 ,2 ,7 ,8 ]
Piolot, Tristan [9 ,10 ]
机构
[1] CNRS UMR144, F-75248 Paris, France
[2] Inst Curie, F-75248 Paris, France
[3] MRC Lab Mol Biol, Cell Biol Div, Cambridge CB2 0QH, England
[4] Lab Phys ENS Lyon, F-69364 Lyon, France
[5] Univ Lyon 1, CNRS UMR5672, F-69364 Lyon, France
[6] Univ Grenoble Alpes, GIPSA Lab, CNRS, F-38000 Grenoble, France
[7] Cell & Tissue Imaging Core Facil PICT IBiSA, F-75248 Paris, France
[8] CNRS, Inst Curie, Nikon Imaging Ctr, F-75248 Paris, France
[9] CNRS UMR3215, F-75248 Paris, France
[10] INSERM U934, F-75248 Paris, France
关键词
image processing; microscopy; regularization; optimization; LATERAL RESOLUTION; ALGORITHM; REGULARIZATION;
D O I
10.1088/1361-6420/aaccca
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a new approach for structured illumination microscopy image reconstruction. We first introduce the principles of this imaging modality and describe the forward model. We then propose the minimization of nonsmooth convex objective functions for the recovery of the unknown image. In this context, we investigate two data-fitting terms for Poisson-Gaussian noise and introduce a new patch-based regularization method. This approach is tested against other regularization approaches on a realistic benchmark. Finally, we perform some test experiments on images acquired on two different microscopes.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Image estimation for structured-illumination microscopy
    Conchello, JA
    THREE-DIMENSIONAL AND MULTIDIMENSIONAL MICROSCOPY: IMAGE ACQUISITION AND PROCESSING XII, 2005, 5701 : 34 - 41
  • [22] Facile Conversion and Optimization of Structured Illumination Image Reconstruction Code into the GPU Environment
    Oh, Kwangsung
    Bianco, Piero R.
    INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2024, 2024
  • [23] Live cell super-resolution optical microscopy by structured illumination microscopy with instant image reconstruction
    Huser, Thomas
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2021, 50 (SUPPL 1): : 53 - 53
  • [24] Super-Resolution Fluorescence Microscopy Image Reconstruction Algorithm Based on Structured Illumination
    Liu Zhi
    Luo Zewei
    Wang Zhengyin
    Tu Zhuang
    Zhuang Zhengfei
    Chen Tongsheng
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2021, 48 (03):
  • [25] Structured Illumination Microscopy Image Reconstruction Algorithm (vol 22, pg 50, 2016)
    Lal, Amit
    Sha, Chunyan
    Xi, Peng
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2023, 29 (06)
  • [26] Estimation-free spatial-domain image reconstruction of structured illumination microscopy
    Li, Xiaoyan
    Tu, Shijie
    Sun, Yile
    Han, Yubing
    Hao, Xiang
    Kuang, Cuifang
    Liu, Xu
    JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2024, 17 (02)
  • [27] Investigation on Super-resolution Image Reconstruction for Structured Illumination Microscopy in the Spatial Domain
    Huang Caihong
    Zhu Xingxing
    Guo Wei
    Yi Dingrong
    Jin Fujiang
    Huang Lei
    ACTA PHOTONICA SINICA, 2022, 51 (11)
  • [28] A cascaded deep network for reconstruction of structured illumination microscopy
    Liu, Xin
    Li, Jinze
    Li, Jiaoyue
    Ali, Nauman
    Zhao, Tianyu
    An, Sha
    Zheng, Juanjuan
    Ma, Ying
    Qian, Jiaming
    Zuo, Chao
    Gao, Peng
    OPTICS AND LASER TECHNOLOGY, 2024, 170
  • [29] Fast spatial domain reconstruction for structured illumination microscopy
    Zhou, Xing
    Lei, Ming
    Dan, Dan
    Yao, Baoli
    BIOMEDICAL IMAGING AND SENSING CONFERENCE, 2018, 10711
  • [30] Reconstruction of structured illumination microscopy with an untrained neural network
    Liu, Xin
    Li, Jinze
    Fang, Xiang
    Li, Jiaoyue
    Zheng, Juanjuan
    Li, Jianlang
    Ali, Nauman
    Zuo, Chao
    Gao, Peng
    An, Sha
    OPTICS COMMUNICATIONS, 2023, 537