MOUNTAIN PASS THEOREM WITH INFINITE DISCRETE SYMMETRY

被引:0
|
作者
Barcenas, Noe [1 ]
机构
[1] UNAM, Ctr Ciencias Matemat, Ap Postal 61-3 Xangari, Morelia Michoacan 58089, Mexico
关键词
COMPACT LIE-GROUPS; EQUIVARIANT STABLE COHOMOTOPY; SEGAL CONJECTURE; PROPER ACTIONS; BURNSIDE RING; FINITE-GROUP; K-THEORY; CATEGORY; EXISTENCE; SPACES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend an equivariant mountain pass theorem, due to Bartsch, Clapp and Puppe for compact Lie groups to the setting of infinite discrete groups satisfying a maximality condition on their finite subgroups.
引用
下载
收藏
页码:331 / 350
页数:20
相关论文
共 50 条
  • [21] A MOUNTAIN PASS THEOREM FOR ACTIONS OF COMPACT LIE-GROUPS
    BARTSCH, T
    CLAPP, M
    PUPPE, D
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1991, 419 : 55 - 66
  • [22] Application of a Variant of Mountain Pass Theorem in Modeling Real Phenomena
    Meghea, Irina
    MATHEMATICS, 2022, 10 (19)
  • [23] A mountain pass theorem without Palais-Smale condition
    Lucia, M
    COMPTES RENDUS MATHEMATIQUE, 2005, 341 (05) : 287 - 291
  • [24] Symmetry of mountain pass solutions of some vector field equations
    Lopes, Orlando
    Montenegro, Marcelo
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2006, 18 (04) : 991 - 999
  • [25] Semilinear Elliptic Problems, Mountain Pass Index and Break of Symmetry
    Srikanth, P. N.
    MODELLING OF ENGINEERING AND TECHNOLOGICAL PROBLEMS, 2009, 1146 : 343 - 344
  • [26] Symmetry of Mountain Pass Solutions of Some Vector Field Equations
    Orlando Lopes
    Marcelo Montenegro
    Journal of Dynamics and Differential Equations, 2006, 18 : 991 - 999
  • [27] The Pythagorean theorem: II. the infinite discrete case
    Kadison, RV
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (08) : 5217 - 5222
  • [28] Ground state and mountain pass solutions for discrete p(⋅)-Laplacian
    Cristian Bereanu
    Petru Jebelean
    Călin Şerban
    Boundary Value Problems, 2012
  • [29] Ground state and mountain pass solutions for discrete p(•)-Laplacian
    Bereanu, Cristian
    Jebelean, Petru
    Serban, Calin
    BOUNDARY VALUE PROBLEMS, 2012,
  • [30] A generalized mountain-pass theorem: the existence of multiple critical points
    Ruppen, Hans-Jorg
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (04)