Concatenation arguments and their applications to polyominoes and polycubes

被引:3
|
作者
Barequet, Gill [1 ]
Ben-Shachar, Gil [1 ]
Osegueda, Martha Carolina [2 ]
机构
[1] Technion Israel Inst Technol, Dept Comp Sci, IL-3200003 Haifa, Israel
[2] Univ Calif Irvine, Dept Comp Sci, Irvine, CA 92717 USA
基金
美国国家科学基金会;
关键词
Lattice animals; Growth constant; Asymptotic analysis; LATTICE ANIMALS; GROWTH CONSTANT;
D O I
10.1016/j.comgeo.2021.101790
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a method for setting lower and upper bounds on growth constants of polyominoes and polycubes whose enumerating sequences are so-called quasi sub-or super-multiplicative. The method is based on concatenation arguments, applied directly or recursively. Inter alia, we demonstrate the method on general polycubes, tree polyominoes and polycubes, and convex polyominoes. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Common Unfoldings of Polyominoes and Polycubes
    Aloupis, Greg
    Bose, Prosenjit K.
    Collette, Sebastien
    Demaine, Erik D.
    Demaine, Martin L.
    Douieb, Karim
    Dujmovic, Vida
    Iacono, John
    Langerman, Stefan
    Morin, Pat
    COMPUTATIONAL GEOMETRY, GRAPHS AND APPLICATIONS, 2011, 7033 : 44 - +
  • [2] Enumeration of Polyominoes & Polycubes Composed of Magnetic Cubes
    Lu, Yitong
    Bhattacharjee, Anuruddha
    Biediger, Daniel
    Kim, MinJun
    Becker, Aaron T.
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 6977 - 6982
  • [3] Fully Leafed Tree-Like Polyominoes and Polycubes
    Masse, Alexandre Blondin
    de Carufel, Julien
    Goupil, Alain
    Samson, Maxime
    COMBINATORIAL ALGORITHMS, IWOCA 2017, 2018, 10765 : 206 - 218
  • [4] Improved Upper Bounds on the Growth Constants of Polyominoes and Polycubes
    Gill Barequet
    Mira Shalah
    Algorithmica, 2022, 84 : 3559 - 3586
  • [5] Improved Upper Bounds on the Growth Constants of Polyominoes and Polycubes
    Barequet, Gill
    Shalah, Mira
    ALGORITHMICA, 2022, 84 (12) : 3559 - 3586
  • [6] Counting d-dimensional polycubes and nonrectangular planar polyominoes
    Aleksandrowicz, Gadi
    Barequet, Gill
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2006, 4112 : 418 - 427
  • [7] COUNTING d-DIMENSIONAL POLYCUBES AND NONRECTANGULAR PLANAR POLYOMINOES
    Aleksandrowicz, Gadi
    Barequet, Gill
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2009, 19 (03) : 215 - 229
  • [8] UNIVERSAL ARGUMENTS AND THEIR APPLICATIONS
    Barak, Boaz
    Goldreich, Oded
    SIAM JOURNAL ON COMPUTING, 2008, 38 (05) : 1661 - 1694
  • [9] Universal arguments and their applications
    Barak, B
    Goldreich, O
    17TH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2002, : 194 - 203
  • [10] Sumcheck Arguments and Their Applications
    Bootle, Jonathan
    Chiesa, Alessandro
    Sotiraki, Katerina
    ADVANCES IN CRYPTOLOGY (CRYPTO 2021), PT I, 2021, 12825 : 742 - 773