Improved Upper Bounds on the Growth Constants of Polyominoes and Polycubes

被引:2
|
作者
Barequet, Gill [1 ]
Shalah, Mira [1 ]
机构
[1] Technion Israel Inst Technol, Dept Comp Sci, IL-3200003 Haifa, Israel
关键词
Klarner's constant; Square lattice; Cubical lattice; PERCOLATION PROCESSES; COUNTING POLYOMINOES; LATTICE ANIMALS; FREE-ENERGY; SERIES;
D O I
10.1007/s00453-022-00948-6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A d-dimensional polycube is a face-connected set of cells on Z(d). Let A(d) (n) denote the number of d-dimensional polycubes (distinct up to translations) with n cubes, and lambda(d) denote their growth constant lim(n ->infinity) A(d)(n+1)/A(d)(n). We revisit and extend the method for the best known upper bound on A(2)(n). Our contributions include the following. 1. We prove that lambda(2) <= 4.5252; 2. We prove that lambda(d) <= (2d - 2)e + o(1) for d >= 2 (already improving significantly the known upper bound on lambda(3) to 9.8073); and 3. We implement an iterative process in three dimensions, improving further the upper bound on lambda(3) to 9.3835.
引用
收藏
页码:3559 / 3586
页数:28
相关论文
共 50 条
  • [1] Improved Upper Bounds on the Growth Constants of Polyominoes and Polycubes
    Gill Barequet
    Mira Shalah
    Algorithmica, 2022, 84 : 3559 - 3586
  • [2] Common Unfoldings of Polyominoes and Polycubes
    Aloupis, Greg
    Bose, Prosenjit K.
    Collette, Sebastien
    Demaine, Erik D.
    Demaine, Martin L.
    Douieb, Karim
    Dujmovic, Vida
    Iacono, John
    Langerman, Stefan
    Morin, Pat
    COMPUTATIONAL GEOMETRY, GRAPHS AND APPLICATIONS, 2011, 7033 : 44 - +
  • [3] Concatenation arguments and their applications to polyominoes and polycubes
    Barequet, Gill
    Ben-Shachar, Gil
    Osegueda, Martha Carolina
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2021, 98
  • [4] Improved Upper Bounds on the Hermite and KZ Constants
    Wen, Jinming
    Chang, Xiao-Wen
    Weng, Jian
    2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 1742 - 1746
  • [5] Enumeration of Polyominoes & Polycubes Composed of Magnetic Cubes
    Lu, Yitong
    Bhattacharjee, Anuruddha
    Biediger, Daniel
    Kim, MinJun
    Becker, Aaron T.
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 6977 - 6982
  • [6] Fully Leafed Tree-Like Polyominoes and Polycubes
    Masse, Alexandre Blondin
    de Carufel, Julien
    Goupil, Alain
    Samson, Maxime
    COMBINATORIAL ALGORITHMS, IWOCA 2017, 2018, 10765 : 206 - 218
  • [7] Counting d-dimensional polycubes and nonrectangular planar polyominoes
    Aleksandrowicz, Gadi
    Barequet, Gill
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2006, 4112 : 418 - 427
  • [8] COUNTING d-DIMENSIONAL POLYCUBES AND NONRECTANGULAR PLANAR POLYOMINOES
    Aleksandrowicz, Gadi
    Barequet, Gill
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2009, 19 (03) : 215 - 229
  • [9] Explicit upper bounds for the Stieltjes constants
    Eddin, Sumaia Saad
    JOURNAL OF NUMBER THEORY, 2013, 133 (03) : 1027 - 1044
  • [10] Improved Upper Bounds on the Asymptotic Growth Velocity of Eden Clusters
    Kumar, Aanjaneya
    Dhar, Deepak
    JOURNAL OF STATISTICAL PHYSICS, 2020, 180 (1-6) : 710 - 720