Developmental localization of potassium chloride co-transporter 2 (KCC2), GABA and vesicular GABA transporter (VGAT) in the postnatal mouse somatosensory cortex

被引:29
|
作者
Takayama, Chitoshi [1 ,2 ]
Inoue, Yoshiro [2 ]
机构
[1] Univ Ryukyus, Fac Med, Dept Mol Anat, Okinawa 9030215, Japan
[2] Hokkaido Univ, Sch Med, Dept Mol Neuroanat, Sapporo, Hokkaido 0608638, Japan
关键词
Activity-dependent plasticity; Barrel structure; Corticogenesis; Critical period; GABA synapse; KCC2; Somatosensory cortex; VGAT; DEVELOPING CEREBRAL-CORTEX; SYNAPTIC INHIBITION; GABAERGIC SYNAPSES; CELL MIGRATION; GROWTH CONES; CEREBELLUM; EXPRESSION; NEOCORTEX; NEURONS; BRAIN;
D O I
10.1016/j.neures.2010.02.010
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Gamma-amino butyric acid (GABA) mediates the hyperpolarization of membrane potential, negatively regulating glutamatergic activity in the adult brain, whereas, mediates depolarization in the immature brain. This developmental shift in GABA actions is induced by the expression of potassium chloride cotransporter 2 (KCC2). In this study, we focused on the developing mouse somatosensory cortex, where the barrel structure in layer 4 is altered by the whisker-lesion during the critical period, before postnatal day 4 (P4). First, to clarify the time-course of postnatal changes in GABA actions, we investigated the developmental localization of KCC2. Second, to reveal its spatial and temporal relationship with GABA synapse formation, we examined the developmental localization of GABA and vesicular GABA transporter. KCC2 was localized within the pyramidal cells in layer 5 after P3, granule cells in layer 4 after P5 and neurons in layers 2 and 3 after P7, indicating that KCC2 was expressed in the chronological order of neuronal settling at the destination. The onset of KCC2 localization was almost concomitant with the formation of GABA synapses, suggesting that GABA was inhibitory after GABA synapse formation. Furthermore, extrasynaptically released GABA might be involved in the maintenance of activity-dependent plasticity as an excitatory transmitter during the critical period. (C) 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
引用
收藏
页码:137 / 148
页数:12
相关论文
共 50 条
  • [41] The small molecule CLP257 does not modify activity of the K+–Cl− co-transporter KCC2 but does potentiate GABAA receptor activity
    Ross A Cardarelli
    Karen Jones
    Lucie I Pisella
    Heike J Wobst
    Lisa J McWilliams
    Paul M Sharpe
    Matthew P Burnham
    David J Baker
    Ilona Chudotvorova
    Justine Guyot
    Liliya Silayeva
    Danielle H Morrow
    Niek Dekker
    Stephen Zicha
    Paul A Davies
    Jörg Holenz
    Mark E Duggan
    John Dunlop
    Robert J Mather
    Qi Wang
    Igor Medina
    Nicholas J Brandon
    Tarek Z Deeb
    Stephen J Moss
    Nature Medicine, 2017, 23 : 1394 - 1396
  • [42] The small molecule CLP257 does not modify activity of the K+-Cl- co-transporter KCC2 but does potentiate GABAA receptor activity
    Cardarelli, Ross A.
    Jones, Karen
    Pisella, Lucie I.
    Wobst, Heike J.
    McWilliams, Lisa J.
    Sharpe, Paul M.
    Burnham, Matthew P.
    Baker, David J.
    Chudotvorova, Ilona
    Guyot, Justine
    Silayeva, Liliya
    Morrow, Danielle H.
    Dekker, Niek
    Zicha, Stephen
    Davies, Paul A.
    Holenz, Jorg
    Duggan, Mark E.
    Dunlop, John
    Mather, Robert J.
    Wang, Qi
    Medina, Igor
    Brandon, Nicholas J.
    Deeb, Tarek Z.
    Moss, Stephen J.
    NATURE MEDICINE, 2017, 23 (12) : 1394 - +
  • [43] Reply to The small molecule CLP257 does not modify activity of the K+–Cl− co-transporter KCC2 but does potentiate GABAA receptor activity
    Martin Gagnon
    Marc J Bergeron
    Jimena Perez-Sanchez
    Isabel Plasencia-Fernández
    Louis-Etienne Lorenzo
    Antoine G Godin
    Annie Castonguay
    Robert P Bonin
    Yves De Koninck
    Nature Medicine, 2017, 23 : 1396 - 1398
  • [44] The small molecule CLP257 does not modify activity of the K+-Cl- co-transporter KCC2 but does potentiate GABAA receptor activity Reply
    Gagnon, Martin
    Bergeron, Marc J.
    Perez-Sanchez, Jimena
    Plasencia-Fernandez, Isabel
    Lorenzo, Louis-Etienne
    Godin, Antoine G.
    Castonguay, Annie
    Bonin, Robert P.
    De Koninck, Yves
    NATURE MEDICINE, 2017, 23 (12) : 1396 - +
  • [45] GABAergic Neuronal Deficiency Patterns and Type 2 Potassium-Chloride Co-transporter immaturity in Human Focal Cortical Dysplasia
    Han, Pengcheng
    Welsh, Cynthia
    Smith, Michael
    Schmidt, Robert
    Carroll, Steven
    JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2018, 77 (06): : 479 - 479
  • [46] Evidence for low affinity of GABA at the vesicular monoamine transporter VMAT2-Implications for transmitter co-release from dopamine neurons
    Srinivasan, Sivakumar
    Limani, Fabian
    Hanzlova, Michaela
    Batide-Alanore, Segolene La
    Klotz, Sigrid
    Hnasko, Thomas S.
    Steinkellner, Thomas
    NEUROPHARMACOLOGY, 2025, 270
  • [47] Long-term expressional changes of Na+-K+-Cl- co-transporter 1 (NKCC1) and K+-Cl- co-transporter 2 (KCC2) in CA1 region of hippocampus following lithium-pilocarpine induced status epilepticus (PISE)
    Li, Xiubin
    Zhou, Jueqian
    Chen, Ziyi
    Chen, Shuda
    Zhu, Feiqi
    Zhou, Liemin
    BRAIN RESEARCH, 2008, 1221 : 141 - 146
  • [48] Epigenetic suppression of potassium-chloride co-transporter 2 expression in inflammatory pain induced by complete Freund's adjuvant (CFA)
    Lin, C-R
    Cheng, J-K
    Wu, C-H
    Chen, K-H
    Liu, C-K
    EUROPEAN JOURNAL OF PAIN, 2017, 21 (02) : 309 - 321
  • [49] Prenatal hypoxia-ischemia induces abnormalities in CA3 microstructure, potassium chloride co-transporter 2 expression and inhibitory tone
    Jantzie, Lauren L.
    Getsy, Paulina M.
    Denson, Jesse L.
    Firl, Daniel J.
    Maxwell, Jessie R.
    Rogers, Danny A.
    Wilson, Christopher G.
    Robinson, Shenandoah
    FRONTIERS IN CELLULAR NEUROSCIENCE, 2015, 9
  • [50] SNARE-DEPENDENT UPREGULATION OF POTASSIUM CHLORIDE CO-TRANSPORTER 2 ACTIVITY AFTER METABOTROPIC ZINC RECEPTOR ACTIVATION IN RAT CORTICAL NEURONS IN VITRO
    Saadi, R. A.
    He, K.
    Hartnett, K. A.
    Kandler, K.
    Hershfinkel, M.
    Aizenman, E.
    NEUROSCIENCE, 2012, 210 : 38 - 46