Anisotropic fractional diffusion equation

被引:9
|
作者
Mendes, GA
Lenzi, EK
Mendes, RS
da Silva, LR
机构
[1] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, Parana, Brazil
[2] Univ Fed Rio Grande do Norte, Dept Fis, BR-59072972 Natal, RN, Brazil
关键词
anomalous diffusion; fractional diffusion; nonlinear diffusion; diffusion equation;
D O I
10.1016/j.physa.2004.07.033
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze an anisotropic fractional diffusion equation that extends sonic known diffusion equations by considering a diffusion coefficient with spatial and time dependence, the presence of external forces and time fractional derivatives. We obtain new exact classes of solutions for a linear anisotropic fractional diffusion equation and investigate the time scaling behavior and an asymptotic solution for a nonlinear anisotropic fractional diffusion equation. We connect the asymptotic solution obtained with the distribution that emerges from the nonextensive statistics to the nonlinear case. We also verify different diffusive behavior, for instance, subdiffusion and superdiffusion, in each direction. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:271 / 283
页数:13
相关论文
共 50 条
  • [31] Solution of a modified fractional diffusion equation
    Langlands, TAM
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 367 (136-144) : 136 - 144
  • [32] On fractional diffusion equation with noise perturbation
    Sridevi, C. S.
    Rajendran, Mabel L.
    Suvinthra, M.
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2024, 12 (01) : 98 - 106
  • [33] ON A FRACTIONAL DIFFUSION EQUATION WITH MOVING CONTROL
    Micu, Sorin
    Nita, Constantin
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2022, 60 (02) : 871 - 889
  • [34] CTRW pathways to the fractional diffusion equation
    Barkai, E
    CHEMICAL PHYSICS, 2002, 284 (1-2) : 13 - 27
  • [35] Fractional nonlinear diffusion equation, solutions and anomalous diffusion
    Silva, A. T.
    Lenzi, E. K.
    Evangelista, L. R.
    Lenzi, M. K.
    da Silva, L. R.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 375 (01) : 65 - 71
  • [36] Fractional reaction-diffusion equation
    Seki, K
    Wojcik, M
    Tachiya, M
    JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (04): : 2165 - 2170
  • [37] Apriori estimates for fractional diffusion equation
    Burazin, K.
    Mitrovic, D.
    OPTIMIZATION LETTERS, 2019, 13 (08) : 1793 - 1801
  • [38] A Nonlinear Fractional Model of Diffusion Equation
    Draganescu, Gheorghe Eugen
    Bereteu, Liviu
    Stanescu, Dan Viorel
    Rujan, Dan
    PHYSICS CONFERENCE (TIM-10), 2011, 1387
  • [39] A fractional diffusion equation with sink term
    M. A. F. dos Santos
    Indian Journal of Physics, 2020, 94 : 1123 - 1133
  • [40] Numerical simulation of the fractional diffusion equation
    Partohaghighi, Mohammad
    Yusuf, Abdullahi
    Jarad, Fahd
    Sulaiman, Tukur A.
    Alquran, Marwan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2023, 37 (10):