Non-CO2 greenhouse gases in the second generation model

被引:0
|
作者
Fawcett, Allen A.
Sands, Ronald D.
机构
[1] US EPA, Washington, DC 20460 USA
[2] Univ Maryland, Pacific NW Natl Lab, Battelle, Joint Global Change Res Inst, College Pk, MD 20740 USA
来源
关键词
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
The Second Generation Model (SGM) was developed to analyze policies designed to reduce greenhouse gas emissions. This paper documents how greenhouse gas emissions are calculated in the SGM, and provides an application to several Energy Modeling Forum scenarios that stabilize radiative forcing by using policies that either exclusively limit CO2 emissions or include both CO2 and non-CO2 greenhouse gases. Additionally, this paper discusses an extension which includes advanced fossil generating technologies with CO2 capture and storage in the USA region of the SGM.
引用
收藏
页码:305 / 322
页数:18
相关论文
共 50 条
  • [31] Deep mitigation of CO2 and non-CO2 greenhouse gases toward 1.5 °C and 2 °C futures
    Yang Ou
    Christopher Roney
    Jameel Alsalam
    Katherine Calvin
    Jared Creason
    Jae Edmonds
    Allen A. Fawcett
    Page Kyle
    Kanishka Narayan
    Patrick O’Rourke
    Pralit Patel
    Shaun Ragnauth
    Steven J. Smith
    Haewon McJeon
    [J]. Nature Communications, 12
  • [32] Deep mitigation of CO2 and non-CO2 greenhouse gases toward 1.5 °C and 2 °C futures
    Ou, Yang
    Roney, Christopher
    Alsalam, Jameel
    Calvin, Katherine
    Creason, Jared
    Edmonds, Jae
    Fawcett, Allen A.
    Kyle, Page
    Narayan, Kanishka
    O'Rourke, Patrick
    Patel, Pralit
    Ragnauth, Shaun
    Smith, Steven J.
    McJeon, Haewon
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [33] Data for long-term marginal abatement cost curves of non-CO2 greenhouse gases
    Harmsen, Mathijs J. H. M.
    van Vuuren, Detlef P.
    Nayak, Dali R.
    Hof, Andries E.
    Hoglund-Isaksson, Lena
    Lucas, Paul L.
    Nielsen, Jens B.
    Smith, Pete
    Stehfest, Elke
    [J]. DATA IN BRIEF, 2019, 25
  • [34] Emission mitigation potentials and costs for non-CO2 greenhouse gases in Annex-I countries according to the GAINS model
    Winiwarter, Wilfried
    Hoglund-Isaksson, Lena
    Schopp, Wolfgang
    Tohka, Antti
    Wagner, Fabian
    Amann, Markus
    [J]. JOURNAL OF INTEGRATIVE ENVIRONMENTAL SCIENCES, 2010, 7 : 235 - 243
  • [35] Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production
    Popp, Alexander
    Lotze-Campen, Hermann
    Bodirsky, Benjamin
    [J]. GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS, 2010, 20 (03): : 451 - 462
  • [36] SPECIAL ISSUE - NON-CO2 GREENHOUSE GASES - WHY AND HOW TO CONTROL - ARTICLES FROM AN INTERNATIONAL-SYMPOSIUM ON NON-CO2 GREENHOUSE GASES, HELD FROM 13-15 DECEMBER 1993 IN MAASTRICHT, THE NETHERLANDS - PREFACE
    VANHAM, J
    JANSSEN, L
    SWART, R
    [J]. ENVIRONMENTAL MONITORING AND ASSESSMENT, 1994, 31 (1-2) : R9 - R11
  • [37] The combustion mitigation of methane as a non-CO2 greenhouse gas
    Jiang, X.
    Mira, D.
    Cluff, D. L.
    [J]. PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2018, 66 : 176 - 199
  • [38] US actions to reduce emissions of non-CO2 gases
    Kruger, D
    Rand, S
    [J]. NON-CO2 GREENHOUSE GASES: SCIENTIFIC UNDERSTANDING, CONTROL AND IMPLEMENTATION, 2000, : 539 - 546
  • [39] Challenges to addressing non-CO2 greenhouse gases in China's long-term climate strategy
    Wang, Xin
    Teng, Fei
    Zhang, Jingjing
    Khanna, Nina
    Lin, Jiang
    [J]. CLIMATE POLICY, 2018, 18 (08) : 1059 - 1065
  • [40] Reaching reduction targets through co-operation:: the Dutch Reduction Programme non-CO2 Greenhouse gases (ROB)
    Williams-Jacobse, J
    [J]. NON-C02 GREENHOUSE GASES: SCIENTIFIC UNDERSTANDING, CONTROL OPTIONS AND POLICY ASPECTS, 2002, : 589 - 592