MULTIFRACTAL ANOMALY DETECTION IN IMAGES VIA SPACE-SCALE SURROGATES

被引:0
|
作者
Wendt, Herwig [1 ]
Leon, Lorena [1 ]
Tourneret, Jean-Yves [1 ]
Abry, Patrice [2 ]
机构
[1] Univ Toulouse, IRIT, CNRS, Toulouse INP,UT3, Toulouse, France
[2] Univ Claude Bernard, Univ Lyon, Ens Lyon, Lab Phys,CNRS, Lyon, France
关键词
anomaly detection; multifractal analysis; surrogate data; wavelet leaders; log-cumulants; TIME-SERIES; SEGMENTATION; BOOTSTRAP;
D O I
10.1109/ICIP46576.2022.9897659
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multifractal analysis provides a global description for the spatial fluctuations of the strengths of the pointwise regularity of image amplitudes. A global image characterization leads to robust estimation, but is blind to and corrupted by small regions in the image whose multifractality differs from that of the rest of the image. Prior detection of such zones with anomalous multifractality is thus crucial for relevant analysis, and their delineation of central interest in applications, yet has never been achieved so far. The goal of this work is to devise and study such a multifractal anomaly detection scheme. Our approach combines three original key ingredients: i) a recently proposed generic model for the statistics of the multiresolution coefficients used in multifractal estimation (wavelet leaders), ii) an original surrogate data generation procedure for simulating a hypothesized global multifractality and iii) a combination of multiple hypothesis tests to achieve pixel-wise detection. Numerical simulations using synthetic multifractal images show that our procedure is operational and leads to good multifractal anomaly detection results for a range of target sizes and parameter values of practical relevance.
引用
收藏
页码:556 / 560
页数:5
相关论文
共 50 条
  • [41] Anomaly detection in images with shared autoencoders
    Jia, Haoyang
    Liu, Wenfen
    FRONTIERS IN NEUROROBOTICS, 2023, 16
  • [42] Anomaly detection in polarimetric radar images
    Melamed, Georgy
    Rotman, Stanley R.
    Blumberg, Dan G.
    Weiss, Anthony J.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2012, 33 (04) : 1164 - 1189
  • [43] Differential Anomaly Detection for Facial Images
    Ibsen, M.
    Gonzalez-Soler, L. J.
    Rathgeb, C.
    Drozdowski, P.
    Gomez-Barrero, M.
    Busch, C.
    2021 IEEE INTERNATIONAL WORKSHOP ON INFORMATION FORENSICS AND SECURITY (WIFS), 2021, : 110 - 115
  • [44] Space-Scale Hybrid Continuous-Discrete Sliding Frank-Wolfe Method
    Lage, Clara
    Pustelnik, Nelly
    Arbona, Jean Michel
    Audit, Benjamin
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 830 - 834
  • [45] Graph representation of images in scale-space with application to face detection
    Maruta, H
    Kozakaya, T
    Koike, Y
    Sato, M
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2003, E86D (07): : 1221 - 1227
  • [46] A Robust Nonlinear Scale Space Change Detection Approach for SAR Images
    Sevilmis, Berk
    Okman, O. Erman
    Nar, Fatih
    Demirkesen, Can
    Cetin, Mujdat
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XIX, 2013, 8892
  • [47] Graph representation of images in scale-space with application to face detection
    Maruta, Hidenori
    Kozakaya, Tatsuo
    Koike, Yasuharu
    Sato, Makoto
    IEICE Transactions on Information and Systems, 2003, E86-D (07) : 1221 - 1227
  • [48] An Innovative Approach to Anomaly Detection in Communication Networks Using Multifractal Analysis
    Dymora, Pawel
    Mazurek, Miroslaw
    APPLIED SCIENCES-BASEL, 2020, 10 (09):
  • [49] Kernel-Based Nonlinear Anomaly Detection via Union Dictionary for Hyperspectral Images
    Gao, Yenan
    Gu, Jiafeng
    Cheng, Tongkai
    Wang, Bin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [50] Anomaly detection in large-scale networks: A state-space decision process
    Alghuried, Abdullah
    Moghaddass, Ramin
    JOURNAL OF QUALITY TECHNOLOGY, 2022, 54 (01) : 65 - 92