The existence of mild and classical solutions for time fractional Fokker-Planck equations

被引:7
|
作者
Peng, Li [1 ,3 ]
Zhou, Yong [1 ,2 ]
机构
[1] Xiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] Macau Univ Sci & Technol, Fac Informat Technol, Macau 999078, Peoples R China
[3] Natl Ctr Appl Math, Changsha, Hunan, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2022年 / 199卷 / 02期
基金
中国国家自然科学基金;
关键词
Riemann-Liouville fractional derivative; Fokker-Planck equations; Mild and classical solutions; Existence and uniqueness; BOUNDARY-VALUE-PROBLEMS; CAUCHY-PROBLEMS; DIFFUSION;
D O I
10.1007/s00605-022-01710-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Time fractional Fokker-Planck equations can be used to describe the subdiffusion in an external time-and space-dependent force field F(t, x). In this paper, we convert it to the form of the following problems partial derivative(u)(t) - kappa(alpha)partial derivative(1-alpha)(t) Delta u = del . (F partial derivative(1-alpha)(t)u) + f, where alpha is an element of (0, 1). We obtain some results on existence and uniqueness of mild solutions allowing the "working space" that may have low regularity. Secondly, we analyze the relationship between "working space" and the value range of a when investigating the problem of classical solutions. Finally, by constructing a suitable weighted Holder continuous function space, the existence of classical solutions is derived without the restriction on alpha is an element of (1/2, 1).
引用
收藏
页码:377 / 410
页数:34
相关论文
共 50 条
  • [21] ON THE GAUSSIAN APPROXIMATION FOR SOLUTIONS OF FOKKER-PLANCK EQUATIONS
    KHARRASOV, MK
    ABDULLIN, AU
    DOKLADY AKADEMII NAUK, 1994, 335 (01) : 32 - 34
  • [22] Generalized solutions to nonlinear Fokker-Planck equations
    Barbu, Viorel
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (04) : 2446 - 2471
  • [23] Existence Results for Fokker-Planck Equations in Hilbert Spaces
    Bogachev, Vladimir
    Da Prato, Giuseppe
    Roeckner, Michael
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS VI, 2011, 63 : 23 - +
  • [24] Maximum principle for controlled fractional Fokker-Planck equations
    Wang, Qiuxi
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [25] New results on Fokker-Planck equations of fractional order
    Jumarie, G
    CHAOS SOLITONS & FRACTALS, 2001, 12 (10) : 1873 - 1886
  • [26] Maximum principle for controlled fractional Fokker-Planck equations
    Qiuxi Wang
    Advances in Difference Equations, 2015
  • [27] Well-posedness for the fractional Fokker-Planck equations
    Wei, Jinlong
    Tian, Rongrong
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (03)
  • [28] The analytical analysis of fractional order Fokker-Planck equations
    Khan, Hassan
    Farooq, Umar
    Tchier, Fairouz
    Khan, Qasim
    Singh, Gurpreet
    Kumam, Poom
    Sitthithakerngkiet, Kanokwan
    AIMS MATHEMATICS, 2022, 7 (07): : 11919 - 11941
  • [29] Existence and uniqueness of solutions for forward and backward nonlocal Fokker-Planck equations with time-dependent coefficients
    Meng, Qingyan
    Wang, Yejuan
    Kloeden, Peter E.
    Han, Xiaoying
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 403 : 1 - 28
  • [30] GENERALIZED CONTINUOUS TIME RANDOM WALKS, MASTER EQUATIONS, AND FRACTIONAL FOKKER-PLANCK EQUATIONS
    Angstmann, C. N.
    Donnelly, I. C.
    Henry, B. I.
    Langlands, T. A. M.
    Straka, P.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2015, 75 (04) : 1445 - 1468