Escape of stars from gravitational clusters in the Chandrasekhar model

被引:12
|
作者
Lemou, Mohammed [3 ,4 ]
Chavanis, Pierre-Henri [1 ,2 ]
机构
[1] Univ Toulouse, UPS, Lab Phys Theor IRSAMC, F-31062 Toulouse, France
[2] CNRS, Lab Phys Theor IRSAMC, F-31062 Toulouse, France
[3] CNRS, IRMAR, F-35042 Rennes, France
[4] Univ Rennes 1, IRMAR, F-35042 Rennes, France
关键词
Kinetic theory; Fokker-Planck equations; Self-gravitating systems; Exact results; POST-COLLAPSE EVOLUTION; STELLAR-SYSTEMS; GLOBULAR-CLUSTERS; STATISTICAL-MECHANICS; VIOLENT RELAXATION; DYNAMICAL FRICTION; SPHERICAL SYSTEMS; CATASTROPHE; ENCOUNTERS; PARTICLE;
D O I
10.1016/j.physa.2009.11.009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the evaporation of stars from globular clusters using the simplified Chandrasekhar model [S. Chandrasekhar, Dynamical friction. II. The rate of escape of stars from clusters and the evidence for the operation of dynamical friction, Astrophys. J. 97 (1943) 263]. This is an analytically tractable model giving reasonable agreement with more sophisticated models that require complicated numerical integrations. In the Chandrasekhar model: (i) the stellar system is assumed to be infinite and homogeneous (ii) the evolution of the velocity distribution of stars f (v, t) is governed by a Fokker-Planck equation, the so-called Kramers-Chandrasekhar equation (iii) the velocities vertical bar v vertical bar that are above a threshold value R > 0 (escape velocity) are not counted in the statistical distribution of the system. In fact, high velocity stars leave the system, due to free evaporation or to the attraction of a neighboring galaxy (tidal effects). Accordingly, the total mass and energy of the system decrease in time. If the star dynamics is described by the Kramers-Chandrasekhar equation, the mass decreases to zero exponentially rapidly. Our goal is to obtain non-perturbative analytical results that complement the seminal studies of Chandrasekhar, Michie and King valid for large times t -> +infinity and large escape velocities R -> +infinity. In particular, we obtain an exact semi-explicit solution of the Kramers-Chandrasekhar equation with the absorbing boundary condition f (R, t) = 0. We use it to obtain an explicit expression of the mass loss at any time t when R -> +infinity. We also derive an exact integral equation giving the exponential evaporation rate lambda(R), and the corresponding eigenfunction f(lambda)(v), when t -> +infinity for any sufficiently large value of the escape velocity R. For R -> +infinity, we obtain an explicit expression of the evaporation rate that refines the Chandrasekhar results. More generally, our results can have applications in other contexts where the Kramers equation applies, like the classical diffusion of particles over a barrier of potential (Kramers problem). (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1021 / 1040
页数:20
相关论文
共 50 条