Fabrication of High-Energy Li-Ion Cells with Li4Ti5O12 Microspheres as Anode and 0.5Li2MnO30.5LiNi0.4Co0.2Mn0.4O2 Microspheres as Cathode

被引:15
|
作者
Dai, Chenguang [1 ,2 ]
Ye, Jing [1 ,2 ]
Zhao, Shiyong [3 ]
He, Ping [1 ,2 ]
Zhou, Haoshen [1 ,2 ,3 ,4 ]
机构
[1] Nanjing Univ, Coll Engn & Appl Sci, Ctr Energy Storage Mat & Technol, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Zhangjiagang Guotai Huarong New Chem Mat Co Ltd, Zhangjiagang 215634, Peoples R China
[4] Natl Inst Adv Ind Sci & Technol, Umezono 1-1-1, Tsukuba, Ibaraki 3058568, Japan
关键词
full cells; high tap density; lithium-ion batteries; microspheres; spray drying method; HIGH-RATE PERFORMANCE; LITHIUM BATTERIES M; ELECTROCHEMICAL PERFORMANCE; ELECTRODE MATERIAL; MECHANISM; COMPOSITE; NANOTUBE; STORAGE; OXIDE; MN;
D O I
10.1002/asia.201501417
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work, we propose an effective way to prepare nanosized Li4Ti5O12 (LTO) microspheres and 0.5Li(2)MnO(3)0.5LiNi(0.4)Co(0.2)Mn(0.4)O(2) (NCM) microspheres by similar spray-drying methods. Both obtained materials are accumulated by primary nanoparticles and show a spherical morphology with particle distribution of 10-20m. The LTO microspheres deliver a tap density of 1.04gcm(-3), while the tap density of NCM microspheres is 2.07gcm(-3), which means an enhanced volumetric energy density. The as-prepared LTO microspheres have a reversible capacity of 170mAhg(-1) at 0.1C and a capacity retention of 97% after 250 cycles at 1C. The NCM microspheres have an initial discharge capacity of 270mAhg(-1) with a corresponding Coulombic efficiency of 88% at 0.03C. Both materials show a relatively good rate capability. The Li4Ti5O12/0.5Li(2)MnO(3)0.5LiNi(0.4)Co(0.2)Mn(0.4)O(2) cells deliver a high cathode specific capacity of 273mAhg(-1) and good initial Coulombic efficiency of 88% at 0.03C, and can be developed for powering hybrid and plug-in hybrid vehicles.
引用
收藏
页码:1273 / 1280
页数:8
相关论文
共 50 条
  • [41] Structure and electrochemical properties of Li4Ti5O12 with Li excess as an anode electrode material for Li-ion batteries
    Gu, Yi-Jie
    Guo, Zhen
    Liu, Hong-Quan
    ELECTROCHIMICA ACTA, 2014, 123 : 576 - 581
  • [42] Effect of capacity matchup in the LiNi0.5Mn1.5O4/Li4Ti5O12 cells
    Xiang, H. F.
    Zhang, X.
    Jin, Q. Y.
    Zhang, C. P.
    Chen, C. H.
    Ge, X. W.
    JOURNAL OF POWER SOURCES, 2008, 183 (01) : 355 - 360
  • [43] 水分对LiNi0.5Co0.2Mn0.3O2/Li4Ti5O12电池高温性能的影响
    杨尘
    汪涛
    王金龙
    熊明松
    电池, 2018, 48 (01) : 45 - 48
  • [44] Effects of current collectors on power performance of Li4Ti5O12 anode for Li-ion battery
    Wu, Hsien-Chang
    Lee, Eric
    Wu, Nae-Lih
    Jow, T. Richard
    JOURNAL OF POWER SOURCES, 2012, 197 : 301 - 304
  • [45] Conductive surface modification with copper of Li4Ti5O12 as anode materials for Li-ion batteries
    He, Zhenjiang
    Wang, Zhixing
    Cheng, Lei
    Li, Tao
    Li, Xinhai
    Guo, Huajun
    Wu, Feixiang
    MATERIALS LETTERS, 2013, 107 : 273 - 275
  • [46] Preparation of High-rate Performance Li4Ti5O12/C Anode Material in Li4Ti5O12/LiFe0.5Mn0.5PO4 Batteries
    Yang, Chun-Chen
    Hwu, Hwai-Jow
    Lin, S. J.
    Chien, Wen-Chen
    Shih, Jeng-Ywan
    ELECTROCHIMICA ACTA, 2014, 125 : 637 - 645
  • [47] Effect of rGO on electrochemical behavior of Li4Ti5O12 as an anode material for Li-ion batteries
    Mokaripoor, Elham
    Kazeminezhad, Iraj
    Daneshtalab, Reza
    MATERIALS TODAY COMMUNICATIONS, 2024, 38
  • [48] Synthesis and electrochemical properties of Li4Ti5O12/CuO anode material for Li-ion batteries
    Zhu, Ji-Ping
    Yang, Guang
    Zhao, Jun-jie
    Wang, Qing-song
    Yang, Hong-wei
    MECHANICS, SOLID STATE AND ENGINEERING MATERIALS, 2011, 279 : 77 - 82
  • [49] Electrochemical characteristics of Ge incorporated Li4Ti5O12 as an anode for Li-ion battery applications
    Sreejith, O. V.
    Indu, M. S.
    Alexander, George V.
    Murugan, Ramaswamy
    MATERIALS TODAY COMMUNICATIONS, 2021, 27
  • [50] Binary Li4Ti5O12-Li2Ti3O7 Nanocomposite as an Anode Material for Li-Ion Batteries
    Zhu, Guan-Nan
    Chen, Long
    Wang, Yong-Gang
    Wang, Con-Xiao
    Che, Ren-Chao
    Xia, Yong-Yao
    ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (05) : 640 - 647