Melnikov chaos in a periodically driven Rayleigh-Duffing oscillator

被引:44
|
作者
Siewe, M. Siewe [1 ,2 ]
Tchawoua, C. [2 ]
Woafo, P. [3 ]
机构
[1] Univ Pretoria, Dept Math & Appl Math, ZA-0002 Pretoria, South Africa
[2] Univ Yaounde 1, Fac Sci, Dept Phys, Lab Mecan, Yaounde, Cameroon
[3] Univ Yaounde 1, Fac Sci, Dept Phys, Lab Nonlinear Modelling & Simulat Engn & Biol Phy, Yaounde, Cameroon
关键词
Homoclinic orbit; Melnikov chaos; Rayleigh oscillator; Bifurcation; BIFURCATION; MODEL; VIBRATION; PENDULUM; FIELD;
D O I
10.1016/j.mechrescom.2010.04.001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The chaotic behavior of Duffing-Rayleigh oscillator under harmonic external excitation is investigated. Melnikov technique is used to detected the necessary conditions for chaotic motion of this deterministic system. The results show that the shape of the basin boundaries of attraction are fractals as the damping increases above the threshold of Melnikov chaos. The effect of damping parameter on phase portraits and Poincare maps, in addition to the numerical simulations of bifurcation diagram and maximum Lyapunov exponents is also investigated. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:363 / 368
页数:6
相关论文
共 50 条
  • [31] Imbricated chaos in rough potential f6-Rayleigh-Duffing oscillator
    Adelakun, A. O.
    Dada, J. B.
    Dansu, E. J.
    CHAOS SOLITONS & FRACTALS, 2023, 174
  • [32] 分数阶Rayleigh-Duffing系统的主共振
    陈聚峰
    王媛媛
    申永军
    李向红
    振动与冲击, 2024, 43 (16) : 111 - 117
  • [33] Primary resonance of a fractional-order Rayleigh-Duffing system
    Chen, Jufeng
    Wang, Yuanyuan
    Shen, Yongjun
    Li, Xianghong
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (16): : 111 - 117
  • [34] TRANSITION TO CHAOS IN THE DUFFING OSCILLATOR
    NOVAK, S
    FREHLICH, RG
    PHYSICAL REVIEW A, 1982, 26 (06): : 3660 - 3663
  • [35] ON THE OCCURRENCE OF CHAOS IN DUFFING OSCILLATOR
    AWREJCEWICZ, J
    JOURNAL OF SOUND AND VIBRATION, 1986, 108 (01) : 176 - 178
  • [36] Bifurcation and chaos in a periodically driven quartic oscillator at relativistic energies
    Kim, SW
    Lee, HW
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (04): : 945 - 949
  • [37] Analytical study on the chaos threshold of a Duffing oscillator with a fractional-order derivative term by the Melnikov method
    Qin H.
    Wen S.
    Shen Y.
    Xing H.
    Wang J.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2021, 40 (06): : 33 - 40and134
  • [38] Global tangency and transversality of periodic flows and chaos in a periodically forced, damped Duffing oscillator
    Luo, Albert C. J.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (01): : 1 - 49
  • [39] Birth of oscillation in coupled non-oscillatory Rayleigh-Duffing oscillators
    Guin, A.
    Dandapathak, M.
    Sarkar, S.
    Sarkar, B. C.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 42 : 420 - 436
  • [40] Chaos in the quasi periodically forced Helmholtz-Duffing oscillator with two-well potential
    Lou Jing-jun
    Zhu Shi-jian
    He Qi-wei
    Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol 1, Pts A-C, 2005, : 1389 - 1393