Melnikov chaos in a periodically driven Rayleigh-Duffing oscillator

被引:44
|
作者
Siewe, M. Siewe [1 ,2 ]
Tchawoua, C. [2 ]
Woafo, P. [3 ]
机构
[1] Univ Pretoria, Dept Math & Appl Math, ZA-0002 Pretoria, South Africa
[2] Univ Yaounde 1, Fac Sci, Dept Phys, Lab Mecan, Yaounde, Cameroon
[3] Univ Yaounde 1, Fac Sci, Dept Phys, Lab Nonlinear Modelling & Simulat Engn & Biol Phy, Yaounde, Cameroon
关键词
Homoclinic orbit; Melnikov chaos; Rayleigh oscillator; Bifurcation; BIFURCATION; MODEL; VIBRATION; PENDULUM; FIELD;
D O I
10.1016/j.mechrescom.2010.04.001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The chaotic behavior of Duffing-Rayleigh oscillator under harmonic external excitation is investigated. Melnikov technique is used to detected the necessary conditions for chaotic motion of this deterministic system. The results show that the shape of the basin boundaries of attraction are fractals as the damping increases above the threshold of Melnikov chaos. The effect of damping parameter on phase portraits and Poincare maps, in addition to the numerical simulations of bifurcation diagram and maximum Lyapunov exponents is also investigated. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:363 / 368
页数:6
相关论文
共 50 条
  • [1] Melnikov Chaos in a Modified Rayleigh-Duffing Oscillator with φ6 Potential
    Miwadinou, C. H.
    Monwanou, A. V.
    Hinvi, L. A.
    Koukpemedji, A. A.
    Ainamon, C.
    Orou, J. B. Chabi
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (05):
  • [2] On the dynamics of the Rayleigh-Duffing oscillator
    Gine, Jaume
    Valls, Claudia
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 45 : 309 - 319
  • [3] Chaotic dynamics of a Rayleigh-Duffing oscillator with periodically external and parametric excitations
    Zhou, Liangqiang
    Liu, Shanshan
    Chen, Fangqi
    PROCEEDINGS OF THE6TH INTERNATIONAL CONFERENCE ON MECHATRONICS, MATERIALS, BIOTECHNOLOGY AND ENVIRONMENT (ICMMBE 2016), 2016, 83 : 286 - 292
  • [4] BIFURCATIONS OF EQUILIBRIA IN A DISCRETE RAYLEIGH-DUFFING OSCILLATOR
    Hao, Xiaozhi
    Wang, Chao
    Li, Yuan
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (06) : 1115 - 1141
  • [5] The focus case of a nonsmooth Rayleigh-Duffing oscillator
    Wang, Zhaoxia
    Chen, Hebai
    Tang, Yilei
    NONLINEAR DYNAMICS, 2022, 107 (01) : 269 - 311
  • [6] The saddle case of a nonsmooth Rayleigh-Duffing oscillator
    Wang, Zhaoxia
    Chen, Hebai
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2021, 129
  • [7] Liouvillian integrability of a general Rayleigh-Duffing oscillator
    Jaume Giné
    Claudia Valls
    Journal of Nonlinear Mathematical Physics, 2019, 26 : 169 - 187
  • [8] Chaos of the Rayleigh-Duffing oscillator with a non-smooth periodic perturbation and harmonic excitation
    Zhou, Liangqiang
    Chen, Fangqi
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 192 : 1 - 18
  • [9] Liouvillian integrability of a general Rayleigh-Duffing oscillator
    Gine, Jaume
    Valls, Claudia
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2019, 26 (02) : 169 - 187
  • [10] Synchronization of self-sustained Rayleigh-Duffing oscillator
    Ma, Mihua
    Cai, Ping
    Cai, Jianping
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2007, 14 : 145 - 148