Error bounds for strongly monotone and Lipschitz continuous variational inequalities

被引:3
|
作者
Khanh Duy Pham [1 ,2 ]
Nhut Minh Bui [3 ]
机构
[1] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[3] Univ British Columbia, Dept Math, Kelowna, BC V1V 1V7, Canada
关键词
Variational inequality; Strong monotonicity; Lipschitz continuity; Calmness; Lower error bound; Upper error bound; Univariate case; COMPLEMENTARITY-PROBLEMS; MERIT FUNCTIONS; GAP FUNCTIONS; OPTIMIZATION;
D O I
10.1007/s11590-017-1185-y
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Our aim is to establish lower and upper error bounds for strongly monotone variational inequalities satisfying the Lipschitz continuity. In univariate case, the latter is not needed for getting an upper error bound and a lower error bound is proved by solely using the Lipschitz continuity.
引用
收藏
页码:971 / 984
页数:14
相关论文
共 50 条