Approximation algorithms for the metric maximum clustering problem with given cluster sizes

被引:2
|
作者
Hassin, R [1 ]
Rubinstein, S [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, Dept Stat & Operat Res, IL-69978 Tel Aviv, Israel
关键词
approximation algorithms; maximum clustering;
D O I
10.1016/S0167-6377(02)00235-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The input to the METRIC MAXIMUM CLUSTERING PROBLEM WITH GIVEN CLUSTER SIZES consists of a complete graph G=(V, E) with edge weights satisfying the triangle inequality, and integers c(1),...., c(p) that sum to I V. The goal is to find a partition of V into disjoint clusters of sizes c(1),....,c(p), that maximizes the sum of weights of edges whose two ends belong to the same cluster. We describe approximation algorithms for this problem. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:179 / 184
页数:6
相关论文
共 50 条
  • [41] Approximation algorithms for the maximum 2-peripatetic salesman problem
    Gimadi E.K.
    Ivonina E.V.
    Journal of Applied and Industrial Mathematics, 2012, 6 (3) : 295 - 305
  • [42] An Experimental Evaluation of Fast Approximation Algorithms for the Maximum Satisfiability Problem
    Poloczek, Matthias
    Williamson, David P.
    EXPERIMENTAL ALGORITHMS, SEA 2016, 2016, 9685 : 246 - 261
  • [43] Better Approximation Algorithms for the Maximum Internal Spanning Tree Problem
    Knauer, Martin
    Spoerhase, Joachim
    ALGORITHMS AND DATA STRUCTURES, 2009, 5664 : 459 - 470
  • [44] Better Approximation Algorithms for the Maximum Internal Spanning Tree Problem
    Martin Knauer
    Joachim Spoerhase
    Algorithmica, 2015, 71 : 797 - 811
  • [45] Maximum sizes of graphs with given domination parameters
    Dankelmann, P
    Domke, GS
    Goddard, W
    Grobler, P
    Hattingh, JH
    Swart, HC
    DISCRETE MATHEMATICS, 2004, 281 (1-3) : 137 - 148
  • [46] Approximation algorithms for the maximum vertex coverage problem on bounded degree graphs
    Zhou, Peiyan
    Jiang, Haitao
    Zhu, Daming
    Zhu, Binhai
    Theoretical Computer Science, 2021, 888 : 22 - 30
  • [47] Approximation and Parameterized Runtime Analysis of Evolutionary Algorithms for the Maximum Cut Problem
    Zhou, Yuren
    Lai, Xinsheng
    Li, Kangshun
    IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (08) : 1491 - 1498
  • [48] Approximation algorithms for the maximum Hamiltonian path problem with specified endpoint(s)
    Monnot, J
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2005, 161 (03) : 721 - 735
  • [49] Approximation algorithms for the maximum vertex coverage problem on bounded degree graphs
    Zhou, Peiyan
    Jiang, Haitao
    Zhu, Daming
    Zhu, Binhai
    THEORETICAL COMPUTER SCIENCE, 2021, 888 : 22 - 30
  • [50] Approximation algorithms for capacitated partial inverse maximum spanning tree problem
    Li, Xianyue
    Zhang, Zhao
    Yang, Ruowang
    Zhang, Heping
    Du, Ding-Zhu
    JOURNAL OF GLOBAL OPTIMIZATION, 2020, 77 (02) : 319 - 340