Non-Gaussian Data Assimilation Via Modified Cholesky Decomposition

被引:0
|
作者
Nino-Ruiz, Elias D. [1 ]
Mancilla-Herrera, Alfonso M. [1 ]
Beltran-Arrieta, Rolando [1 ]
机构
[1] Univ Norte, Dept Comp Sci, Barranquilla, Colombia
关键词
ensemble Kalman filter; non-linear observation operator; MCMC; ENSEMBLE KALMAN FILTER; 4D-VAR; MODEL;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes an ensemble Kalman filter implementation for non-linear data assimilation. As in any ensemble based method, the moments of background error distributions are approximated by means of an ensemble of model realizations. The precision background covariance is estimated via a modified Cholesky decomposition in order to decrease the impact of sampling errors. Once all hyper-parameters are estimated, samples from the posterior distribution are estimated via a Markov-Chain-Monte-Carlo (MCMC) method. The MCMC implementation is enhanced by means of linear approximations of the observation operator. Posterior ensembles are then built by using a series of rank-one updates over prior Cholesky factors. Experimental tests are carried out by using the Lorenz 96 model. The numerical results evidence that, as the degree of the observational operator increases, the accuracy of the proposed filter is not affected and even more, for full observational networks, posterior errors are much lower than those of backgrounds, in some cases, by several order of magnitudes.
引用
收藏
页码:29 / 36
页数:8
相关论文
共 50 条
  • [21] A Robust Non-Gaussian Data Assimilation Method for Highly Non-Linear Models
    Nino-Ruiz, Elias D.
    Cheng, Haiyan
    Beltran, Rolando
    ATMOSPHERE, 2018, 9 (04)
  • [22] Non-Gaussian Ensemble Filtering and Adaptive Inflation for Soil Moisture Data Assimilation
    Dibia, Emmanuel C.
    Reichle, Rolf H.
    Anderson, Jeffrey L.
    Liang, Xin-Zhong
    JOURNAL OF HYDROMETEOROLOGY, 2023, 24 (06) : 1039 - 1053
  • [23] A Marginal Adjustment Rank Histogram Filter for Non-Gaussian Ensemble Data Assimilation
    Anderson, Jeffrey L.
    MONTHLY WEATHER REVIEW, 2020, 148 (08) : 3361 - 3378
  • [24] A non-Gaussian analysis scheme using rank histograms for ensemble data assimilation
    Metref, S.
    Cosme, E.
    Snyder, C.
    Brasseur, P.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2014, 21 (04) : 869 - 885
  • [25] Nonlinear and Non-Gaussian Ensemble Assimilation of MOPITT CO
    Gaubert, Benjamin
    Anderson, Jeffrey L.
    Trudeau, Michael
    Smith, Nadia
    McKain, Kathryn
    Petron, Gabrielle
    Raeder, Kevin
    Arellano Jr, Avelino F.
    Granier, Claire
    Emmons, Louisa K.
    Ortega, Ivan
    Hannigan, James W.
    Tang, Wenfu
    Worden, Helen M.
    Ziskin, Daniel
    Edwards, David P.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2024, 129 (12)
  • [26] Efficient parameter estimation via modified Cholesky decomposition for quantile regression with longitudinal data
    Lv, Jing
    Guo, Chaohui
    COMPUTATIONAL STATISTICS, 2017, 32 (03) : 947 - 975
  • [27] Efficient parameter estimation via modified Cholesky decomposition for quantile regression with longitudinal data
    Jing Lv
    Chaohui Guo
    Computational Statistics, 2017, 32 : 947 - 975
  • [28] An adjoint-free four-dimensional variational data assimilation method via a modified Cholesky decomposition and an iterative Woodbury matrix formula
    Elias D. Nino-Ruiz
    Luis G. Guzman-Reyes
    Rolando Beltran-Arrieta
    Nonlinear Dynamics, 2020, 99 : 2441 - 2457
  • [29] An adjoint-free four-dimensional variational data assimilation method via a modified Cholesky decomposition and an iterative Woodbury matrix formula
    Nino-Ruiz, Elias D.
    Guzman-Reyes, Luis G.
    Beltran-Arrieta, Rolando
    NONLINEAR DYNAMICS, 2020, 99 (03) : 2441 - 2457
  • [30] A non-Gaussian Bayesian filter for sequential data assimilation with non-intrusive polynomial chaos expansion
    Avasarala, Srikanth
    Subramani, Deepak
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (23) : 7156 - 7181