Genetics and imaging to assess oocyte and preimplantation embryo health

被引:25
|
作者
Warner, CM [1 ]
Newmark, JA
Comiskey, M
De Fazio, SR
O'Malley, DM
Rajadhyaksha, M
Townsend, DJ
McKnight, S
Roysam, B
Dwyer, PJ
DiMarzio, CA
机构
[1] Northeastern Univ, Dept Biol, Boston, MA 02115 USA
[2] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
[3] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, Troy, NY 12180 USA
关键词
human leukocyte antigen-G; k-means clustering algorithm; mitochondria; Ped gene;
D O I
10.1071/RD04088
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Two major criteria are currently used in human assisted reproductive technologies (ART) to evaluate oocyte and preimplantation embryo health: (1) rate of preimplantation embryonic development; and (2) overall morphology. A major gene that regulates the rate of preimplantation development is the preimplantation embryo development (Ped) gene, discovered in our laboratory. In mice, presence of the Ped gene product, Qa-2 protein, results in a fast rate of preimplantation embryonic development, compared with a slow rate of preimplantation embryonic development for embryos that are lacking Qa-2 protein. Moreover, mice that express Qa-2 protein have an overall reproductive advantage that extends beyond the preimplantation period, including higher survival to birth, higher birthweight, and higher survival to weaning. Data are presented that suggest that Qa-2 increases the rate of development of early embryos by acting as a cell-signalling molecule and that phosphatidylinositol-3' kinase is involved in the cell-signalling pathway. The most likely human homologue of Qa-2 has recently been identified as human leukocyte antigen (HLA)-G. Data are presented which show that HLA-G, like Qa-2, is located in lipid rafts, implying that HLA-G also acts as a signalling molecule. In order to better evaluate the second criterion used in ART (i.e. overall morphology), a unique and innovative imaging microscope has been constructed, the Keck 3-D fusion microscope (Keck 3DFM). The Keck 3DFM combines five different microscopic modes into a single platform, allowing multi-modal imaging of the specimen. One of the modes, the quadrature tomographic microscope (QTM), creates digital images of non-stained transparent cells by measuring changes in the index of refraction. Quadrature tomographic microscope images of oocytes and preimplantation mouse embryos are presented for the first time. The digital information from the QTM images should allow the number of cells in a preimplantation embryo to be counted non-invasively. The Keck 3DFM is also being used to assess mitochondrial distribution in mouse oocytes and embryos by using the k-means clustering algorithm. Both the number of cells in preimplantation embryos and mitochondrial distribution are related to oocyte and embryo health. New imaging data obtained from the Keck 3DFM, combined with genetic and biochemical approaches, have the promise of being able to distinguish healthy from unhealthy oocytes and embryos in a non-invasive manner. The goal is to apply the information from our mouse model system to the clinic in order to identify one and only one healthy embryo for transfer back to the mother undergoing an ART procedure. This approach has the potential to increase the success rate of ART and to decrease the high, and undesirable, multiple birth rate presently associated with ART.
引用
收藏
页码:729 / 741
页数:13
相关论文
共 50 条
  • [41] Associations between ultrasound indices of follicular blood flow, oocyte recovery and preimplantation embryo quality
    Nargund, G
    Bourne, T
    Doyle, P
    Parsons, J
    Cheng, W
    Campbell, S
    Collins, W
    HUMAN REPRODUCTION, 1996, 11 (01) : 109 - 113
  • [42] Effects of the pine needle abortifacient, isocupressic acid, on bovine oocyte maturation and preimplantation embryo development
    Wang, S
    Panter, KE
    Gardner, DR
    Evans, RC
    Bunch, TD
    ANIMAL REPRODUCTION SCIENCE, 2004, 81 (3-4) : 237 - 244
  • [43] The genetics of the oocyte
    Plachot, M
    HUMAN OOCYTES: FROM PHYSIOLOGY TO IVF, 1997, : 11 - 17
  • [44] Preimplantation embryo adoption
    Lindheim, SR
    Sauer, MV
    HUMAN REPRODUCTION, 1999, 14 : 296 - 296
  • [45] Apoptosis in the preimplantation embryo
    Guérin, JF
    Lévy, R
    Benchaib, M
    HUMAN REPRODUCTION, 1999, 14 : 97 - 98
  • [46] Progress in Preimplantation Genetics
    Yury Verlinsky
    Anver Kuliev
    Journal of Assisted Reproduction and Genetics, 1998, 15 : 9 - 11
  • [47] What is the preimplantation embryo?
    Krones, Tanja
    Schlueter, Elmar
    Neuwohner, Elke
    El Ansari, Susan
    Wissner, Thomas
    Richter, Gerd
    SOCIAL SCIENCE & MEDICINE, 2006, 63 (01) : 1 - 20
  • [48] Editorial: Preimplantation Genetics
    Yury Verlinsky
    Anver Kuliev
    Journal of Assisted Reproduction and Genetics, 1998, 15 : 215 - 218
  • [49] Progress in preimplantation genetics
    Verlinsky, Y
    Kuliev, A
    JOURNAL OF ASSISTED REPRODUCTION AND GENETICS, 1998, 15 (01) : 9 - 11
  • [50] PREIMPLANTATION GENETICS - AN OVERVIEW
    CRITSER, ES
    ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 1992, 116 (04) : 383 - 387