Time-resolved charge detection and back-action in quantum circuits

被引:3
|
作者
Ihn, T. [1 ]
Gustavsson, S. [1 ]
Gasser, U. [1 ]
Leturcq, R. [1 ]
Shorubalko, I. [1 ]
Ensslin, K. [1 ]
机构
[1] ETH, Solid State Phys Lab, CH-8093 Zurich, Switzerland
来源
关键词
Quantum point contacts; Charge detection; Quantum dots; Back-action; Quantum measurement; ELECTRON-SPIN; POINT-CONTACT; SHOT-NOISE; DOT; CONDUCTORS;
D O I
10.1016/j.physe.2009.11.087
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper reviews investigations of back-action phenomena occurring in systems, where quantum dots are capacitively coupled to quantum point contact charge detectors. Two back-action mechanisms are discussed: first, back-action caused by shot-noise in the quantum point contact, and second, indirect back-action via ohmic heating of the crystal lattice. Experiments focusing on the first aspect consist of the measurement of shot noise at finite frequencies in the range between 0.01 and 0.7 THz. Experiments of the second kind result in the observation of finite current through a double quantum dot system at zero applied source-drain bias voltage. Such a current is possible in the presence of a phonon-system which is not in thermodynamic equilibrium with the electronic system. The double quantum dot acts as a thermoelectric engine extracting electric power from the temperature difference between the two thermal reservoirs. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:803 / 808
页数:6
相关论文
共 50 条
  • [21] Time-resolved charge detection with cross-correlation techniques
    Kueng, B.
    Pfaeffli, O.
    Gustavsson, S.
    Ihn, T.
    Ensslin, K.
    Reinwald, M.
    Wegscheider, W.
    PHYSICAL REVIEW B, 2009, 79 (03)
  • [22] Quantum Back-Action of an Individual Variable-Strength Measurement
    Hatridge, M.
    Shankar, S.
    Mirrahimi, M.
    Schackert, F.
    Geerlings, K.
    Brecht, T.
    Sliwa, K. M.
    Abdo, B.
    Frunzio, L.
    Girvin, S. M.
    Schoelkopf, R. J.
    Devoret, M. H.
    SCIENCE, 2013, 339 (6116) : 178 - 181
  • [23] Emergence of the geometric phase from quantum measurement back-action
    Young-Wook Cho
    Yosep Kim
    Yeon-Ho Choi
    Yong-Su Kim
    Sang-Wook Han
    Sang-Yun Lee
    Sung Moon
    Yoon-Ho Kim
    Nature Physics, 2019, 15 : 665 - 670
  • [24] On the back-action of THz measurement on the total current of quantum devices
    Marian, D.
    Zanghi, N.
    Oriols, X.
    2014 INTERNATIONAL WORKSHOP ON COMPUTATIONAL ELECTRONICS (IWCE), 2014,
  • [25] Time-resolved orientation detection system with quantum cascade lasers
    Ye, Ke
    Chen, Xiaowei
    Zhang, Wenwen
    Lv, Yankun
    Meng, Lingpu
    Ji, Youxin
    Li, Liangbin
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (07):
  • [26] Revival of quantum correlations without system-environment back-action
    Lo Franco, R.
    Bellomo, B.
    Andersson, E.
    Compagno, G.
    PHYSICAL REVIEW A, 2012, 85 (03):
  • [27] Strong back-action of a linear circuit on a single electronic quantum channel
    F. D. Parmentier
    A. Anthore
    S. Jezouin
    H. le Sueur
    U. Gennser
    A. Cavanna
    D. Mailly
    F. Pierre
    Nature Physics, 2011, 7 : 935 - 938
  • [28] Time-Resolved Measurement of a Charge Qubit
    Reuther, Georg M.
    Zueco, David
    Haenggi, Peter
    Kohler, Sigmund
    PHYSICAL REVIEW LETTERS, 2009, 102 (03)
  • [29] QUANTUM NONDEMOLITION STROBOSCOPIC OBSERVABLES AND MULTIPUMPING BACK-ACTION EVASION SCHEMES
    ONOFRIO, R
    PHYSICS LETTERS A, 1990, 148 (1-2) : 1 - 7
  • [30] Cooling a micromechanical resonator by quantum back-action from a noisy qubit
    Wang, Ying-Dan
    Li, Yong
    Xue, Fei
    Bruder, C.
    Semba, K.
    PHYSICAL REVIEW B, 2009, 80 (14):