Deterministic versus nondeterministic time and lower bound problems

被引:3
|
作者
Stearns, RE [1 ]
机构
[1] SUNY Albany, Dept Comp Sci, Albany, NY 12222 USA
关键词
theory; algorithms; computational complexity; generic algorithms; generic problems; nondeterminism; NP-completeness; power index; SAT; time complexity;
D O I
10.1145/602382.602409
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:91 / 95
页数:5
相关论文
共 50 条
  • [21] A LOWER BOUND FOR THE NONDETERMINISTIC SPACE COMPLEXITY OF CONTEXT-FREE RECOGNITION
    ALT, H
    GEFFERT, V
    MEHLHORN, K
    INFORMATION PROCESSING LETTERS, 1992, 42 (01) : 25 - 27
  • [22] A NOTE ON IMPROVED DETERMINISTIC TIME SIMULATION OF NONDETERMINISTIC SPACE FOR SMALL SPACE
    CHANG, EC
    YAP, C
    INFORMATION PROCESSING LETTERS, 1995, 55 (03) : 155 - 157
  • [23] Nondeterministic and co-Nondeterministic Implies Deterministic, for Data Languages
    Klin, Bartek
    Lasota, Slawomir
    Torunczyk, Szymon
    FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES, FOSSACS 2021, 2021, 12650 : 365 - 384
  • [24] Improved lower bound for deterministic broadcasting in radio networks
    Brito, Carlos Fisch
    Vaya, Shailesh
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (29) : 3568 - 3578
  • [25] A Time-Space Lower Bound for a Large Class of Learning Problems
    Raz, Ran
    2017 IEEE 58TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2017, : 732 - 742
  • [26] A lower bound for weak Schur numbers with a deterministic algorithm
    Ben Hassine, Ghada
    Berge, Pierre
    Rimmel, Arpad
    Tomasik, Joanna
    JOURNAL OF DISCRETE ALGORITHMS, 2018, 51 : 12 - 25
  • [27] NONDETERMINISTIC AND DETERMINISTIC K-MACHINES
    KARASEK, J
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1976, 24 (04): : 295 - 298
  • [28] Verifying nondeterministic implementations of deterministic systems
    Jain, A
    Nelson, K
    Bryant, RE
    FORMAL METHODS IN COMPUTER-AIDED DESIGN, 1996, 1166 : 109 - 125
  • [29] Equivalence of Deterministic and Nondeterministic Epsilon Automata
    Trybulec, Michal
    FORMALIZED MATHEMATICS, 2009, 17 (02): : 193 - 199
  • [30] DETERMINISTIC AND NONDETERMINISTIC PROGRAMMING IN ROBOT SYSTEMS
    GINI, G
    GINI, M
    SOMALVICO, M
    CYBERNETICS AND SYSTEMS, 1981, 12 (04) : 345 - 362