Motor Imagery Based EEG Classification by Using Common Spatial Patterns and Convolutional Neural Networks

被引:9
|
作者
Korhan, Nuri [1 ]
Dokur, Zumray [2 ]
Olmez, Tamer [2 ]
机构
[1] Istanbul Tech Univ, Dept Mechatron Engn, Istanbul, Turkey
[2] Istanbul Tech Univ, Dept Elect & Commun Engn, Istanbul, Turkey
关键词
EEG Motor Imagery; Deep Learning; Convolutional Neural Network; Common Spatial Patterns; COMPONENTS; FILTERS;
D O I
10.1109/ebbt.2019.8741832
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
EEG signal processing has been an important and engaging issue over the last three decades. It has been used in the applications ranging from controlling mobile robots to analyzing sleep stages. Previously it was used in the applications of clinical neurology such as detecting epileptic seizure, finding epileptiform discharges, diagnosis of epilepsy, etc. Convolutional Neural Network (CNN) on the other hand is one of the most popular and successful method that has been broadly utilized in machine learning problems such as pattern recognition, image classification and object detection. The proposed study focuses on maximizing the classification performance by combining two of the most successful methods: CSP (Common Spatial Patterns) and CNN. Three different setups have been established in order to observe the changes in the validation accuracy of the classifier. At first, a CNN (four convolution layers and a fully connected layer) structure is trained by feeding the raw data. Secondly, five different filters are applied to the original signal and their outputs are utilized in the training of a CNN having the same structure. Thirdly, the original signal has been transformed via CSP into another space where its spatial features are observed more clearly and then classified by the CNN. It is observed that the combination of CSP and CNN gives the best performance with 93.75% validation accuracy.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Classification of EEG Motor Imagery Using Support Vector Machine and Convolutional Neural Network
    Wu, Yu-Te
    Huang, Tzu Hsuan
    Lin, Chun Yi
    Tsai, Sheng Jia
    Wang, Po-Shan
    2018 INTERNATIONAL AUTOMATIC CONTROL CONFERENCE (CACS), 2018,
  • [32] A classification method for EEG motor imagery signals based on parallel convolutional neural network
    Han, Yuexing
    Wang, Bing
    Luo, Jie
    Li, Long
    Li, Xiaolong
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71
  • [33] Subject adaptation convolutional neural network for EEG-based motor imagery classification
    Liu, Siwei
    Zhang, Jia
    Wang, Andong
    Wu, Hanrui
    Zhao, Qibin
    Long, Jinyi
    JOURNAL OF NEURAL ENGINEERING, 2022, 19 (06)
  • [34] Multi-Task Convolutional Networks for Motor Imagery Classification Based on EEG and fNIRS
    Feng, Lufeng
    He, Qun
    Xu, Xiangyuan
    Jiang, Guoqian
    Xie, Ping
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2021, 168 : S199 - S199
  • [35] Multiclass EEG motor-imagery classification with sub-band common spatial patterns
    Khan, Javeria
    Bhatti, Muhammad Hamza
    Khan, Usman Ghani
    Iqbal, Razi
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2019, 2019 (1)
  • [36] Augmented Complex Common Spatial Patterns for Classification of Noncircular EEG From Motor Imagery Tasks
    Park, Cheolsoo
    Took, Clive Cheong
    Mandic, Danilo P.
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2014, 22 (01) : 1 - 10
  • [37] Multiclass EEG motor-imagery classification with sub-band common spatial patterns
    Javeria Khan
    Muhammad Hamza Bhatti
    Usman Ghani Khan
    Razi Iqbal
    EURASIP Journal on Wireless Communications and Networking, 2019
  • [38] MOTOR IMAGERY FOR EEG BIOMETRICS USING CONVOLUTIONAL NEURAL NETWORK
    Das, Rig
    Maiorana, Emanuele
    Campisi, Patrizio
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 2062 - 2066
  • [39] A Synergy of Convolutional Neural Networks for Sensor-Based EEG Brain–Computer Interfaces to Enhance Motor Imagery Classification
    Department of Computer Science, Faculty of Sciences, Monastir University, Monastir
    5019, Tunisia
    不详
    3100, Tunisia
    不详
    11432, Saudi Arabia
    不详
    11432, Saudi Arabia
    Sensors, 2025, 25 (02)
  • [40] Motor Imagery EEG Classification Using Capsule Networks
    Ha, Kwon-Woo
    Jeong, Jin-Woo
    SENSORS, 2019, 19 (13)