Detecting Fake News Using Machine Learning Algorithms

被引:2
|
作者
Bharath, G. [1 ]
Manikanta, K. J. [1 ]
Prakash, G. Bhanu [1 ]
Sumathi, R. [1 ]
Chinnasamy, P. [2 ]
机构
[1] Kalasalingam Acad Res & Educ, Dept Comp Sci & Engn, Krishnankoil, Tamil Nadu, India
[2] Sri Shakthi Inst Engn & Technol, Dept Informat Technol, Coimbatore, Tamil Nadu, India
关键词
Fake news; STEM; Naive Bayes; Machine learning; Social media; Twitter APJ; Sentimation analysis;
D O I
10.1109/ICCCI50826.2021.9402470
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Online media cooperation particularly the word getting out around the organization is an incredible wellspring of data these days. From one's point of view, its insignificant effort, direct access, and speedy scattering of data that lead individuals to watch out and global news from web sites. Twitter being a champion among the most notable progressing news sources moreover winds up a champion among the most prevailing news emanating mediums. It is known to cause broad damage by spreading pieces of tattle beforehand. Therefore, motorizing fake news acknowledgment is rudimentary to keep up healthy online media and casual association. We proposes a model for perceiving manufactured news messages from twitter posts, by making sense of how to envision exactness examinations, considering automating fashioned news distinguishing proof in Twitter datasets. Subsequently, we played out a correlation between five notable Machine Learning calculations, similar to Support Vector Machine, Naive Bayes Method, Logistic Regression and Recurrent Neural Network models, independently to exhibit the effectiveness of the grouping execution on the dataset. Our exploratory outcome indicated that SVM and Naive Bayes classifier beats different calculation.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Multiclass Fake News Detection using Ensemble Machine Learning
    Kaliyar, Rohit Kumar
    Goswami, Anurag
    Narang, Pratik
    PROCEEDINGS OF THE 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (IACC 2019), 2019, : 103 - 107
  • [32] Fake news detection using supervised machine learning techniques
    Malhotra, Pooja
    Malik, Sanjay Kumar
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2022, 43 (01): : 7 - 15
  • [33] Fake News Detection Using Pos Tagging and Machine Learning
    Kansal, Afreen
    JOURNAL OF APPLIED SECURITY RESEARCH, 2023, 18 (02) : 164 - 179
  • [34] A Research on Fake News Detection Using Machine Learning Algorithm
    Shrivastava, Sagar
    Singh, Rishika
    Jain, Charu
    Kaushal, Shivangi
    SMART SYSTEMS: INNOVATIONS IN COMPUTING (SSIC 2021), 2022, 235 : 273 - 287
  • [35] Fake News Detection Using Machine Learning Ensemble Methods
    Ahmad, Iftikhar
    Yousaf, Muhammad
    Yousaf, Suhail
    Ahmad, Muhammad Ovais
    COMPLEXITY, 2020, 2020
  • [36] Fake news detection in Urdu language using machine learning
    Farooq, Muhammad Shoaib
    Naseem, Ansar
    Rustam, Furqan
    Ashraf, Imran
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [37] Analysis of fake news detection using machine learning technique
    Seetharaman, R.
    Tharun, M.
    Mole, S. S. Sreeja
    Anandan, K.
    MATERIALS TODAY-PROCEEDINGS, 2022, 51 : 2218 - 2223
  • [38] Detecting Fake Images on Social Media using Machine Learning
    AlShariah, Njood Mohammed
    Saudagar, Abdul Khader Jilani
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (12) : 170 - 176
  • [39] COVID-19 INFODEMIC - UNDERSTANDING CONTENT FEATURES IN DETECTING FAKE NEWS USING A MACHINE LEARNING APPROACH
    Balakrishnan, Vimala
    Zing, Hii Lee
    Laporte, Eric
    MALAYSIAN JOURNAL OF COMPUTER SCIENCE, 2023, 36 (01) : 1 - 13
  • [40] Comparison of Fake News Detection using Machine Learning and Deep Learning Techniques
    Alameri, Saeed Amer
    Mohd, Masnizah
    2021 3RD INTERNATIONAL CYBER RESILIENCE CONFERENCE (CRC), 2021, : 101 - 106