On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent

被引:228
|
作者
Mihailescu, Mihai [1 ]
Radulescu, Vicentiu [1 ]
机构
[1] Univ Craiova, Dept Math, Craiova 200585, Romania
关键词
D O I
10.1090/S0002-9939-07-08815-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonlinear eigenvalue problem - div (vertical bar del u|(p(x)-2)del u) = lambda|u|(q(x)-2) u in Omega, u = 0 on partial derivative Omega, where Omega is a bounded open set in R-N with smooth boundary and p, q are continuous functions on (Omega) over bar such that 1 < inf(Omega) q < inf (Omega) p < sup(Omega) q, sup(Omega) p < N, and q(x) < Np(x)/(N-p(x)) for all x is an element of (Omega) over bar. The main result of this paper establishes that any lambda > 0 sufficiently small is an eigenvalue of the above nonhomogeneous quasilinear problem. The proof relies on simple variational arguments based on Ekeland's variational principle.
引用
收藏
页码:2929 / 2937
页数:9
相关论文
共 50 条