Adjacency preserving functions on symmetric elements and linear preservers of non-zero decomposable symmetric tensors

被引:1
|
作者
Lim, Ming-Huat [1 ]
机构
[1] Univ Malaya, Inst Math Sci, Kuala Lumpur 50603, Malaysia
来源
LINEAR & MULTILINEAR ALGEBRA | 2010年 / 58卷 / 04期
关键词
adjacency preserving function; symmetric power; decomposable symmetric tensor; TRANSFORMATIONS; SPACES;
D O I
10.1080/03081080802681484
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a non-empty set and m be a positive integer. Let equivalent to be the equivalence relation defined on A(m) such that (x(1),..., x(m)) equivalent to (y(1),..., y(m)) if there exists a permutation sigma on {1,..., m} such that y(sigma(i)) = x(i) for all i. Let A((m)) denote the set of all equivalence classes determined by equivalent to. Two elements X and Y in A((m)) are said to be adjacent if (x(1),..., x(m-1), a) is an element of X and (x(1),..., x(m-1), b) is an element of Y for some x(1),..., x(m) (1) is an element of A and some distinct elements a, b is an element of A. We study the structure of functions from A((m)) to B((n)) that send adjacent elements to adjacent elements when A has at least n + 2 elements and its application to linear preservers of non-zero decomposable symmetric tensors.
引用
收藏
页码:481 / 496
页数:16
相关论文
共 28 条