Reverse osmosis and nanofiltration membranes for highly efficient PFASs removal: overview, challenges and future perspectives

被引:75
|
作者
Mastropietro, Teresa F. [1 ]
Bruno, Rosaria [1 ]
Pardo, Emilio [2 ]
Armentano, Donatella [1 ]
机构
[1] Univ Calabria, Dipartimento Chim & Tecnol Chim, I-87036 Cosenza, Italy
[2] Univ Valencia, Inst Ciencia Mol ICMOL, Dept Quim Inorgan, Valencia 46980, Spain
基金
欧洲研究理事会;
关键词
D O I
10.1039/d1dt00360g
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Today, it is extremely urgent to face the increasing shortage of clean and safe water resources, determined by the exponential growth of both world population and its consumerism, climate change and pollution. Water remediation from traditional chemicals and contaminants of emerging concerns (CECs) is supposed to be among the major methods to solve water scarcity issues. Reverse osmosis (RO) and nanofiltration (NF) membrane separation technologies have proven to be feasible, sustainable and highly effective methods for the removal of contaminants, comprising the extremely persistent and recalcitrant perfluoroalkyl substances (PFASs), which failed to be treated through the traditional water treatment approaches. So far, however, they have been unable to assure PFASs levels under the established guidance limits for drinking water and still suffer from fouling problems, which limit their large-scale application. Novel configurations, improvement in process design and the development of high-performant materials for membrane production are important steps to tackle these issues, especially in view of new more stringent regulations limiting PFASs content in drinking water. As a possible future strategy, nanocomposite mixed matrix membranes (MMMs) offer a platform of advanced materials which promise to revolutionize RO/NF technologies for water treatment. In particular, the introduction of MOFs as adsorbent fillers in the polymeric membrane matrix appears as a viable approach for the effective and selective capture and removal of PFASs from water. The objective of this review is to provide a dedicated outlook on the most recent advances in RO and NF membrane technologies for PFASs removal. The effects of membrane properties, the solution chemistry, and contaminant properties on the RO/NF performances will be discussed in detail. Future challenges are also discussed, offering new perspectives toward the development of new advanced membranes with improved performance for PFAS removal, which are likely to significantly progress RO and NF technology for water remediation.
引用
收藏
页码:5398 / 5410
页数:13
相关论文
共 50 条
  • [1] Modeling micropollutant removal by nanofiltration and reverse osmosis membranes: considerations and challenges
    Osorio, S. Castano
    Biesheuvel, P. M.
    Spruijt, E.
    Dykstra, J. E.
    van der Wal, A.
    WATER RESEARCH, 2022, 225
  • [2] Removal of antibiotics and estrogens by nanofiltration and reverse osmosis membranes
    Yang, Linyan
    Xia, Caiping
    Jiang, Jielun
    Chen, Xueming
    Zhou, Yanbo
    Yuan, Cheng
    Bai, Lichun
    Meng, Shujuan
    Cao, Guomin
    JOURNAL OF HAZARDOUS MATERIALS, 2024, 461
  • [3] Influence of biofouling on boron removal by nanofiltration and reverse osmosis membranes
    Huertas, Esther
    Herzberg, Moshe
    Oron, Gideon
    Elimelech, Menachem
    JOURNAL OF MEMBRANE SCIENCE, 2008, 318 (1-2) : 264 - 270
  • [4] Evaluation of nanofiltration and reverse osmosis membranes on removal of carbofuran in drinking waters
    Bueno, Marcelo Zawadzki
    Coral, Lucila Adriani
    Sens, Mauricio Luiz
    Lapolli, Flavio Rubens
    ENGENHARIA SANITARIA E AMBIENTAL, 2016, 21 (03) : 447 - 458
  • [5] Removal of furfural and HMF from monosaccharides by nanofiltration and reverse osmosis membranes
    Wang, Tielin
    Meng, Yang
    Qin, Yuanhang
    Feng, Weiliang
    Wang, Cunwen
    JOURNAL OF THE ENERGY INSTITUTE, 2018, 91 (03) : 473 - 480
  • [6] Removal of N-Nitrosamines and Their Precursors by Nanofiltration and Reverse Osmosis Membranes
    Miyashita, Yu
    Park, Sang-Hyuck
    Hyung, Hoon
    Huang, Ching-Hua
    Kim, Jae-Hong
    JOURNAL OF ENVIRONMENTAL ENGINEERING, 2009, 135 (09) : 788 - 795
  • [7] Evaluation of nanofiltration and reverse osmosis membranes for efficient rejection of organic micropollutants
    Alonso, Emmanuel
    Sanchez-Huerta, Claudia
    Ali, Zain
    Wang, Yingge
    Fortunato, Luca
    Pinnau, Ingo
    JOURNAL OF MEMBRANE SCIENCE, 2024, 693
  • [8] Evaluation of nanofiltration and reverse osmosis membranes for efficient rejection of organic micropollutants
    Alonso, Emmanuel
    Sanchez-Huerta, Claudia
    Ali, Zain
    Wang, Yingge
    Fortunato, Luca
    Pinnau, Ingo
    Journal of Membrane Science, 2024, 693
  • [9] Performance of nanofiltration and reverse osmosis membranes for arsenic removal from drinking water
    Elcik, Harun
    Celik, Suna O.
    Cakmakci, Mehmet
    Ozkaya, Bestamin
    DESALINATION AND WATER TREATMENT, 2016, 57 (43) : 20422 - 20429
  • [10] Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes
    Davor Dolar
    Ana Vukovi
    Danijela Aperger
    Kreimir Kouti
    Journal of Environmental Sciences, 2011, 23 (08) : 1299 - 1307