The min-max composition rule and its superiority over the usual max-min composition rule

被引:23
|
作者
Kundu, S [1 ]
机构
[1] Louisiana State Univ, Dept Comp Sci, Baton Rouge, LA 70803 USA
关键词
fuzzy sets; equivalence relation; fuzzy inferencing;
D O I
10.1016/S0165-0114(96)00188-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A close analysis of the Syllogism inference rule shows that if one uses Zadeh's notion of fuzzy if-then, then the proper way of combining the membership values of two fuzzy rules r(1): "if A, then B" and r(2): "if B, then C" is not by the usual max-min composition rule, but by the following min-max rule; tau(ij) = min {max(mu(ik), nu(kj)): all j}, where tau(ij) = m(A)(x(i)) -->m(c)(z(j)), mu(ik) = m(A)(x(i)) --> m(B)(y(k)), and v(kj) = m(B)(y(k)) --> m(c)(z(j)). The min-max value gives an upper bound on tau(ik). The min-max rule results in a new notion of transitivity and a corresponding notion of a fuzzy equivalence relation. We demonstrate the superiority of the min-max rule in terms of the properties of this equivalence relation. In particular, we argue that the new form of transitivity is particularly suitable for studying non-logical (not equal "<->") fuzzy equivalence relationships. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:319 / 329
页数:11
相关论文
共 50 条
  • [31] Complexity of the min-max and min-max regret assignment problems
    Aissi, H
    Bazgan, C
    Vanderpooten, D
    [J]. OPERATIONS RESEARCH LETTERS, 2005, 33 (06) : 634 - 640
  • [32] On the equality of solutions of max-min and min-max systems of variational inequalities with interconnected bilateral obstacles
    Djehiche, Boualem
    Hamadene, Said
    Morlais, Marie-Amehe
    Zhao, Xuzhe
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 452 (01) : 148 - 175
  • [33] Min-Max Spaces and Complexity Reduction in Min-Max Expansions
    Stephane Gaubert
    William M. McEneaney
    [J]. Applied Mathematics & Optimization, 2012, 65 : 315 - 348
  • [34] Unifying view on min-max fairness, max-min fairness, and utility optimization in cellular networks
    Boche, Holger
    Wiczanowski, Marcin
    Stanczak, Slawomir
    [J]. EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2007, 2007 (1)
  • [35] Extension of Max-Min Ant System with Exponential Pheromone Deposition Rule
    Acharya, Ayan
    Maiti, Deepyaman
    Banerjee, Aritra
    Janarthanan, R.
    Konar, Amit
    [J]. ADCOM: 2008 16TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING AND COMMUNICATIONS, 2008, : 1 - +
  • [36] Max-Min and Min-Max Gray Association Degree-Based Method for Multiattribute Decision Making
    Dong, Jiu-Ying
    Wan, Shu-Ping
    [J]. JOURNAL OF INTELLIGENT SYSTEMS, 2015, 24 (04) : 525 - 531
  • [37] 中继网络Max-Min和Min-Max公平性的功率分配
    唐伦
    叶剑雄
    陈前斌
    曾孝平
    [J]. 北京邮电大学学报, 2010, 33 (03) : 67 - 70
  • [38] MAX-MIN PROBLEMS
    KAPUR, KC
    [J]. NAVAL RESEARCH LOGISTICS, 1973, 20 (04) : 639 - 644
  • [39] Max-min separability
    Bagirov, AM
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2005, 20 (2-3): : 271 - 290
  • [40] A MAX-MIN PROBLEM
    MARSH, DCB
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (1P1): : 86 - &