The min-max composition rule and its superiority over the usual max-min composition rule

被引:23
|
作者
Kundu, S [1 ]
机构
[1] Louisiana State Univ, Dept Comp Sci, Baton Rouge, LA 70803 USA
关键词
fuzzy sets; equivalence relation; fuzzy inferencing;
D O I
10.1016/S0165-0114(96)00188-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A close analysis of the Syllogism inference rule shows that if one uses Zadeh's notion of fuzzy if-then, then the proper way of combining the membership values of two fuzzy rules r(1): "if A, then B" and r(2): "if B, then C" is not by the usual max-min composition rule, but by the following min-max rule; tau(ij) = min {max(mu(ik), nu(kj)): all j}, where tau(ij) = m(A)(x(i)) -->m(c)(z(j)), mu(ik) = m(A)(x(i)) --> m(B)(y(k)), and v(kj) = m(B)(y(k)) --> m(c)(z(j)). The min-max value gives an upper bound on tau(ik). The min-max rule results in a new notion of transitivity and a corresponding notion of a fuzzy equivalence relation. We demonstrate the superiority of the min-max rule in terms of the properties of this equivalence relation. In particular, we argue that the new form of transitivity is particularly suitable for studying non-logical (not equal "<->") fuzzy equivalence relationships. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:319 / 329
页数:11
相关论文
共 50 条
  • [1] Min-max and max-min graph saturation parameters
    Sudha, S.
    Arumugam, S.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 943 - 947
  • [2] Max-max, max-min, min-max and min-min knapsack problems with a parametric constraint
    Halman, Nir
    Kovalyov, Mikhail Y.
    Quilliot, Alain
    [J]. 4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2023, 21 (02): : 235 - 246
  • [3] Local Approximability of Max-Min and Min-Max Linear Programs
    Floreen, Patrik
    Hassinen, Marja
    Kaasinen, Joel
    Kaski, Petteri
    Musto, Topi
    Suomela, Jukka
    [J]. THEORY OF COMPUTING SYSTEMS, 2011, 49 (04) : 672 - 697
  • [4] Local Approximability of Max-Min and Min-Max Linear Programs
    Patrik Floréen
    Marja Hassinen
    Joel Kaasinen
    Petteri Kaski
    Topi Musto
    Jukka Suomela
    [J]. Theory of Computing Systems, 2011, 49 : 672 - 697
  • [5] Gumbel central limit theorem for max-min and min-max
    Eliazar, Iddo
    Metzler, Ralf
    Reuveni, Shlomi
    [J]. PHYSICAL REVIEW E, 2019, 100 (02)
  • [6] A unified framework for max-min and min-max fairness with applications
    Radunovic, Bozidar
    Le Boudec, Jean-Yves
    [J]. IEEE-ACM TRANSACTIONS ON NETWORKING, 2007, 15 (05) : 1073 - 1083
  • [7] A max-min learning rule for Fuzzy ART
    Nong Thi Hoa
    The Duy Bui
    [J]. PROCEEDINGS OF 2013 IEEE RIVF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES: RESEARCH, INNOVATION, AND VISION FOR THE FUTURE (RIVF), 2013, : 53 - 57
  • [8] ON THE MIN-MAX COMPOSITION OF FUZZY MATRICES
    RAGAB, MZ
    EMAM, EG
    [J]. FUZZY SETS AND SYSTEMS, 1995, 75 (01) : 83 - 92
  • [9] Zadeh max-min composition fuzzy rule for dominated pixel values in iris localization
    Sophia, S. G. Gino
    Sharmila, V. Ceronmani
    [J]. SOFT COMPUTING, 2019, 23 (06) : 1873 - 1889
  • [10] View materialization using fuzzy MAX-MIN composition with association rule mining (VMFCA)
    Ghosh, Partha
    Goto, Takaaki
    Mandal, J. K.
    Sen, Soumya
    [J]. INNOVATIONS IN SYSTEMS AND SOFTWARE ENGINEERING, 2022, 20 (04) : 851 - 867