Blast furnace charging optimization using multi-objective evolutionary and genetic algorithms

被引:16
|
作者
Mitra, Tamoghna [1 ]
Pettersson, Frank [1 ]
Saxen, Henrik [1 ]
Chakraborti, Nirupam [2 ]
机构
[1] Abo Akad Univ, Thermal & Flow Engn Lab, Fac Sci & Engn, Turku, Finland
[2] Indian Inst Technol, Dept Met & Mat Engn, Kharagpur 7213012, W Bengal, India
关键词
Blast furnace; burden distribution; charging; genetic algorithms; multi-objective optimization; BURDEN DISTRIBUTION; MODEL; OPTIMALITY;
D O I
10.1080/10426914.2016.1257133
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Charging programs giving rise to desired burden and gas distributions in the ironmaking blast furnace were detected through an evolutionary multi-objective optimization strategy. The Pareto optimality condition traditionally used in such studies was substituted by a recently developed k-optimality criterion that allowed for simultaneous optimization of a large number of objectives, leading to a significant improvement over the results of earlier studies. A large number of optimum charging strategies were identified through this procedure and thoroughly analyzed, in view of an efficient blast furnace operation.
引用
收藏
页码:1179 / 1188
页数:10
相关论文
共 50 条
  • [41] Multi-objective optimization by genetic algorithms: A review
    Tamaki, H
    Kita, H
    Kobayashi, S
    1996 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION (ICEC '96), PROCEEDINGS OF, 1996, : 517 - 522
  • [42] Multi-Objective Collaborative Optimization Based on Evolutionary Algorithms
    Su Ruiyi
    Gui Liangjin
    Fan Zijie
    JOURNAL OF MECHANICAL DESIGN, 2011, 133 (10)
  • [43] Automated Selection of Evolutionary Multi-objective Optimization Algorithms
    Tian, Ye
    Peng, Shichen
    Rodemann, Tobias
    Zhang, Xingyi
    Jin, Yaochu
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 3225 - 3232
  • [44] A stopping criterion for multi-objective optimization evolutionary algorithms
    Marti, Luis
    Garcia, Jesus
    Berlanga, Antonio
    Molina, Jose M.
    INFORMATION SCIENCES, 2016, 367 : 700 - 718
  • [45] Multi-objective evolutionary algorithms based fuzzy optimization
    Sánchez, G
    Jiménez, F
    Gómez-Skarmeta, AF
    2003 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-5, CONFERENCE PROCEEDINGS, 2003, : 1 - 7
  • [46] Acceleration of Parametric Multi-objective Optimization by an Initialization Technique for Multi-objective Evolutionary Algorithms
    Kaji, Hirotaka
    Ikeda, Kokolo
    Kita, Hajime
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 2291 - +
  • [47] Robustness using Multi-Objective Evolutionary Algorithms
    Gaspar-Cunha, A.
    Covas, J. A.
    APPLICATIONS OF SOFT COMPUTING: RECENT TRENDS, 2006, : 353 - +
  • [48] Using multi-objective evolutionary algorithms for single-objective constrained and unconstrained optimization
    Carlos Segura
    Carlos A. Coello Coello
    Gara Miranda
    Coromoto León
    Annals of Operations Research, 2016, 240 : 217 - 250
  • [49] Using multi-objective evolutionary algorithms for single-objective constrained and unconstrained optimization
    Segura, Carlos
    Coello Coello, Carlos A.
    Miranda, Gara
    Leon, Coromoto
    ANNALS OF OPERATIONS RESEARCH, 2016, 240 (01) : 217 - 250
  • [50] Multi-objective Optimization of Operating Parameters Based on Neural Network and Genetic Algorithm in the Blast Furnace
    Zhou, Heng
    Yang, Chunjie
    Zhuang, Tian
    Li, Zelong
    Li, Yuxuan
    Wang, Lin
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 2607 - 2610