Uniformly Convergent C0-Nonconforming Triangular Prism Element for Fourth-Order Elliptic Singular Perturbation Problem

被引:5
|
作者
Chen, Hongru [1 ,2 ]
Chen, Shaochun [1 ]
Xiao, Liuchao [2 ]
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450001, Peoples R China
[2] Henan Univ Technol, Coll Sci, Zhengzhou 450001, Peoples R China
关键词
bubble functions; C-0-nonconforming elements; error estimates; fourth-order elliptic singular perturbation problem; APPROXIMATIONS;
D O I
10.1002/num.21878
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we introduce a C-0-nonconforming triangular prism element for the fourth-order elliptic singular perturbation problem in three dimensions by using the bubble functions. The element is proved to be convergent in the energy norm uniformly with respect to the perturbation parameter. (C) 2014 Wiley Periodicals, Inc.
引用
收藏
页码:1785 / 1796
页数:12
相关论文
共 50 条
  • [1] A C0-NONCONFORMING QUADRILATERAL FINITE ELEMENT FOR THE FOURTH-ORDER ELLIPTIC SINGULAR PERTURBATION PROBLEM
    Bao, Yuan
    Meng, Zhaoliang
    Luo, Zhongxuan
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (05): : 1981 - 2001
  • [2] C0-Nonconforming Triangular Prism Elements for the Three-Dimensional Fourth Order Elliptic Problem
    Hong-Ru Chen
    Shao-Chun Chen
    Zhong-Hua Qiao
    Journal of Scientific Computing, 2013, 55 : 645 - 658
  • [3] UNIFORMLY CONVERGENT NONCONFORMING ELEMENT FOR 3-D FOURTH ORDER ELLIPTIC SINGULAR PERTURBATION PROBLEM
    Chen, Hongru
    Chen, Shaochun
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2014, 32 (06) : 687 - 695
  • [4] The nonconforming virtual element method for fourth-order singular perturbation problem
    Zhang, Bei
    Zhao, Jikun
    Chen, Shaochun
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2020, 46 (02)
  • [5] The nonconforming virtual element method for fourth-order singular perturbation problem
    Bei Zhang
    Jikun Zhao
    Shaochun Chen
    Advances in Computational Mathematics, 2020, 46
  • [6] C 0-Nonconforming Triangular Prism Elements for the Three-Dimensional Fourth Order Elliptic Problem
    Chen, Hong-Ru
    Chen, Shao-Chun
    Qiao, Zhong-Hua
    JOURNAL OF SCIENTIFIC COMPUTING, 2013, 55 (03) : 645 - 658
  • [7] C0-nonconforming tetrahedral and cuboid elements for the three-dimensional fourth order elliptic problem
    Chen, Hongru
    Chen, Shaochun
    Qiao, Zhonghua
    NUMERISCHE MATHEMATIK, 2013, 124 (01) : 99 - 119
  • [8] Non Co nonconforming elements for elliptic fourth order singular perturbation problem
    Chen, SC
    Zhao, YC
    Shi, DY
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2005, 23 (02) : 185 - 198
  • [9] A C0 INTERIOR PENALTY METHOD FOR A FOURTH ORDER ELLIPTIC SINGULAR PERTURBATION PROBLEM
    Brenner, Susanne C.
    Neilan, Michael
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (02) : 869 - 892
  • [10] The virtual element method with interior penalty for the fourth-order singular perturbation problem
    Zhang, Bei
    Zhao, Jikun
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 133