Non Co nonconforming elements for elliptic fourth order singular perturbation problem

被引:0
|
作者
Chen, SC [1 ]
Zhao, YC [1 ]
Shi, DY [1 ]
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450052, Peoples R China
关键词
singular perturbation problem; nonconforming element; double set parameter method;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give a convergence theorem for non C-0 nonconforming finite element to solve the elliptic fourth order singular perturbation problem. Two such kind of elements, a nine parameter triangular element and a twelve parameter rectangular element both with double set parameters, are presented. The convergence and numerical results of the two elements are given.
引用
收藏
页码:185 / 198
页数:14
相关论文
共 50 条
  • [1] UNIFORMLY CONVERGENT NONCONFORMING ELEMENT FOR 3-D FOURTH ORDER ELLIPTIC SINGULAR PERTURBATION PROBLEM
    Chen, Hongru
    Chen, Shaochun
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2014, 32 (06) : 687 - 695
  • [2] A C0-NONCONFORMING QUADRILATERAL FINITE ELEMENT FOR THE FOURTH-ORDER ELLIPTIC SINGULAR PERTURBATION PROBLEM
    Bao, Yuan
    Meng, Zhaoliang
    Luo, Zhongxuan
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (05): : 1981 - 2001
  • [3] The nonconforming virtual element method for fourth-order singular perturbation problem
    Zhang, Bei
    Zhao, Jikun
    Chen, Shaochun
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2020, 46 (02)
  • [4] The nonconforming virtual element method for fourth-order singular perturbation problem
    Bei Zhang
    Jikun Zhao
    Shaochun Chen
    Advances in Computational Mathematics, 2020, 46
  • [5] Uniformly stable rectangular elements for fourth order elliptic singular perturbation problems
    Wang, Li
    Wu, Yongke
    Xie, Xiaoping
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (03) : 721 - 737
  • [6] Uniformly Convergent C0-Nonconforming Triangular Prism Element for Fourth-Order Elliptic Singular Perturbation Problem
    Chen, Hongru
    Chen, Shaochun
    Xiao, Liuchao
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (06) : 1785 - 1796
  • [7] A Robust Double Set Parameter Nonconforming Rectangular Element for Fourth Order Elliptic Singular Perturbation Problems
    Shi, Dongyang
    Xie, Pingli
    2011 3RD INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND INFORMATION APPLICATION TECHNOLOGY ESIAT 2011, VOL 10, PT A, 2011, 10 : 854 - 868
  • [8] Modified Morley element method for a fourth order elliptic singular perturbation problem
    Wang, M
    Xu, JC
    Hu, YC
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2006, 24 (02) : 113 - 120
  • [9] Nonconforming tetrahedral finite elements for fourth order elliptic equations
    Ming, Wang
    Xu, Jinchao
    MATHEMATICS OF COMPUTATION, 2006, 76 (257) : 1 - 18
  • [10] On a Fourth Order Elliptic Problem with a Singular Nonlinearity
    Cassani, Daniele
    do O, Joao Marcos
    Ghoussoub, Nassif
    ADVANCED NONLINEAR STUDIES, 2009, 9 (01) : 177 - 197